Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Severodonetsk-Lysychansk agglomeration (Luhansk Oblast, Ukraine) is an industrially developed region with a large amount of the accumulated industrial liquid waste, which, due to the poor condition of storage facilities, significantly affects the quality of surface and groundwater, i.e., sources of household drinking water supply. To reduce the man-made load, this waste must be processed with subsequent reclamation of storage. The liquid phase of sludge storage of soda produced by OJSC “Lysychansk Soda” is proposed for use as an anti-icing reagent. This work is devoted to assessing the environmental impact of such a multicomponent anti-icing reagent when used on the motor roads of the region. The liquid waste contains inorganic salts, mainly chlorides, sulfates, and carbonates of calcium, magnesium, sodium, and ammonium, as well as heavy metals Mn, Sn, Zn, and As in trace amounts. The environmental impact of such a liquid depends mainly on the local landscape features (type of soil, vegetation cover) and meteorological conditions (quantity of seasonal precipitation, the required application rate of reagents). We conducted an analysis of the dilution of the anti-icing reagent by winter precipitation and determined the expected concentrations of chloride ions as the main factor of danger on the roadside and in groundwater of sandy soil of the region with the recommended application rate in the studied region. To assess the biological toxicity of the multicomponent mixture, test systems widely used for rapid screening were chosen. During short-term testing of Daphnia magna S., the semi-lethal and the lowest ineffective dilution factors of the liquid were determined, and the phytotoxicity of the liquid was assessed as the dilution factor resulting in a 10% inhibition of the growth of the root system of Allium cepa L. We found that the dilution factor of distillery wastewater for safe use should be within 260 ÷ 130, and the maximum permissible application rate of the reagent is from 5 to 9 times, which is usually quite sufficient in the climatic conditions of Luhansk Oblast. Thus, the anti-icing agent can be offered for use on the motor roads of the region in compliance with the recommended application rate.
Czasopismo
Rocznik
Tom
Strony
33--47
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Department of Chemical Engineering and Ecology, Volodymyr Dahl East Ukrainian National University, John Paul II str., 17, Kyiv, 01042, Ukraine
autor
- Department of Chemical Engineering and Ecology, Volodymyr Dahl East Ukrainian National University, John Paul II str., 17, Kyiv, 01042, Ukraine
autor
- Department of Construction, Urbanism and Spatial Planning, Volodymyr Dahl East Ukrainian National University, John Paul II str., 17, Kyiv, 01042, Ukraine
autor
- Department of Chemical Engineering and Ecology, Volodymyr Dahl East Ukrainian National University, John Paul II str., 17, Kyiv, 01042, Ukraine
Bibliografia
- 1. Antonyak, H., Bahday, T., Pershyn, O., Bubys, O., Panas, N. & Oleksiuk, N. (2015). Metals in aquatic ecosystems and their impact on the hydrobionts. The Animal Biology, 17(2), 9–24 (In Ukrainian) https://doi.org/10.15407/animbiol17.02
- 2. Arnott, S. E., Celis-Salgado, M. P., Valleau, R. E., DeSellas, A. M., Paterson, A. M., Yan, N. D., Smol, J. P., & Rusak, J. A. (2020). Road salt impacts freshwater zooplankton at concentrations below current water quality guidelines. Environmental Science & Technology, 54, 9398–9407. https://doi.org/10.1021/acs.est.0c02396
- 3. Arreguin-Rebolledo, U., Castelhano Gebara, R., Valencia-Castañeda, G. et al. (2024). Toxicity of binary-metal mixtures (As, Cd, Cu, Fe, Hg, Pb and Zn) in the euryhaline rotifer Proales similis: Antagonistic and synergistic effects. Marine Pollution Bulletin, 198, 115819, https://doi.org/10.1016/j.marpolbul.2023.115819
- 4. Bäckström, M., Nilsson, U., Håkansson, K., Allard, B., & Karlsson, S. (2003). Speciation of heavy metals in road runoff and roadside total deposition. Water, Air, and Soil Pollution, 147(1–4), 343–366. https://doi.org/10.1023/A:1024545916834
- 5. Bykovsky N., Puchkova L., Fanakova N. (2015). Study of the toxicity of distiller fluid ammonia-soda production on different test objects. Ecology and Industry of Russia, 19(10), 48–51. (In Russian) https://doi.org/10.18412/1816-0395-2015-10-48-51
- 6. Bykovsky, N. A., Ovsyannikova, I. V., Puchkova, L. N., & Fanakova, N. N. (2018). Toxicity assessment of the main waste of soda production by phytotesting. In: Key Engineering Materials, 769, 166–171. Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/kem.769.166
- 7. Cañedo-Argüelles, M., Kefford, B. J., Piscart, C., Prat, N, Schäfer, R. B., Schulz, C. J. (2012). Salinisation of rivers: an urgent ecological issue. Environ Pollut., 173, 157–67. https://doi.org/10.1016/j.envpol.2012.10.011
- 8. Çavuşoğlu, D. (2023). Modulation of NaCl-induced osmotic, cytogenetic, oxidative and anatomic damages by coronatine treatment in onion (Allium cepa L.). Sci Rep, 13, 1580. https://doi.org/10.1038/s41598-023-28849-w
- 9. Chai, M., Li, R., Shen, X. et al. (2022). Multiple heavy metals affect root response, iron plaque formation, and metal bioaccumulation of Kandelia obovata. Sci Rep 12, 14389. https://doi.org/10.1038/s41598-022-14867-7
- 10. Coldsnow, K. D., Mattes, B. M., Hintz, W. D., & Relyea, R. A. (2017). Rapid evolution of tolerance to road salt in zooplankton, Environmental Pollution, 222, 367–373. https://doi.org/10.1016/j.envpol.2016.12.024
- 11. Li, C., Liang, Y., Jianget, L. et al. (2021). Characteristics of ammonia-soda residue and its reuse in magnesium oxychloride cement pastes. Construction and Building Materials, 300, 123981, https://doi.org/10.1016/j.conbuildmat.2021.123981
- 12. DSTU 4173:2003. Water Quality. Determination of Acute Lethal Toxicity to Daphnia Magna Straus and Ceriodaphnia Affinis Lilljeborg (Cladocera, Crustacea) (ISO 6341:1996, MOD). 2004. (in Ukrainian).
- 13. Ecological passport of the Luhansk region. (2022). (in Ukrainian). https://www.eco-lugansk.gov.ua/images/docs/ekopasport/eco_pasport_2022.pdf
- 14. Fiskesjö, G. (1995). Allium Test. In: O’Hare, S., Atterwill, C.K. (eds) In Vitro Toxicity Testing Protocols. Methods in Molecular Biology™, 43. Humana Press. https://doi.org/10.1385/0-89603-282-5:119
- 15. Integrated Pollution Prevention and Control. Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals – Solids and Others industry. August 2007. European Commission. URL: https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/lvics_bref_0907.pdf
- 16. Johnston, C.T., Sydor, R.C., Bourne, C.L.S. (2000). Impact of winter road salting on the hydrogeologic environment — an overview. Stantec Consulting Ltd., Kitchener, Ontario https://api.semanticscholar.org/CorpusID:127424902
- 17. Kasikowski, T., Buczkowski, R., Cichosz, M., Lemanowska, E. (2007). Combined distiller waste utilisation and combustion gases desulphurisation method: The case study of sodaash industry. Resources, Conservation and Recycling, 51(3), 665–690. https://doi.org/10.1016/j.resconrec.2006.11.009
- 18. Kasikowski, T., Buczkowski, R., Dejewska, B., Peszyńska-Białczyk, K., Lemanowska, E., Igliński, B. (2004). Utilization of distiller waste from ammonia-soda processing. Journal of Cleaner Production, 12(7), 759–769, https://doi.org/10.1016/S0959-6526(03)00120-3
- 19. Korchuganova, O. M. et al. 2022. The wastes of Luhansk region chemical and energy enterprises and their impact on the environment. In: IOP Conf. Ser.: Earth Environ. Sci. 1049 012042 https://doi.org/10.1088/1755-1315/1049/1/012042
- 20. Krakovska, S. (2012). Current climate changes in the Luhansk region. Geoinformatika, 3(43), 57–68. (in Ukrainian) http://dspace.nbuv.gov.ua/handle/123456789/96482
- 21. Kravchenko, I.V., Suvorin, O.V. & Tatarchenko, H.O. (2023). Corrosion activity of low-carbon steel under the action of multi-component antiicing reagent. Mater Sci, 59(3), 295–299. https://doi.org/10.1007/s11003-024-00776-9
- 22. Kravchenko, І. V. (2021). Analysis of the current state of the air and assessment of inhalation non-carcinogenic risk to the health of the population of the Sievierodonetsk-Lysychansk agglomeration. Environmental sciences, 2(35), 7–14 (in Ukrainian) https://doi.org/10.32846/2306-9716/2021.eco.2-35.1
- 23. Kuznetsova, T.V., Shatov, A.A., Dryamina, M.A. et al. (2005). Use of wastes from soda production to produce nonshrinking oil-well cement. Russ J Appl Chem, 78, 698–701. https://doi.org/10.1007/s11167-005-0374-0
- 24. Lazur, A., VanDerwerker, T. & Koepenick, K. (2020). Review of implications of road salt use on groundwater quality—corrosivity and mobilization of heavy metals and radionuclides. Water Air Soil Pollut, 231, 474. https://doi.org/10.1007/s11270-020-04843-0
- 25. Li, J. (2015). Wastes could be resources and cities could be mines. Waste Management & Research, 33(4), 301–302. https://doi:10.1177/0734242X15581268
- 26. Meng, Q., Li, X., Feng, Q.and Cao, Z. (2008). The Acute and Chronic Toxicity of Five Heavy Metals on the Daphnia Magna. In: 2nd International Conference on Bioinformatics and Biomedical Engineering, China, 4555–4558. https://doi.org/10.1109/ICBBE.2008.298
- 27. Mikhailova, E.O., Panasenko, V.O., Markova, N.B. (2016). Calcium carbonate synthesis with prescribed properties based on liquid waste of soda production. Odes’kyi Politechnichnyi Universytet. Pratsi 2016(2), 81–85. https://doi.org/10.15276/opu.2.49.2016.18
- 28. Mikhalkova N.V., Kononenko A.V., Udalov I.V. (2022). Analysis of the influence of man-made objects of the Lysychansk-Rubizhne industrial hub on the ecological state of the natural environment. Visnyk of V.N. Karazin Kharkiv National University, series “Geology. Geography. Ecology», 56, 225-239. (in Ukrainian). https://doi.org/10.26565/2410-7360-2022-56-17
- 29. Qiang An, Huimin Pan, Qingxin Zhao, Sen Du, Dongli Wang. (2022). Strength development and microstructure of recycled gypsum-soda residue-GG-BS based geopolymer. Construction and Building Materials, 331, 127312. https://doi.org/10.1016/j.conbuildmat.2022.127312
- 30. Qualitative characteristics of underground waters of alluvial and upper cretaceous aquifers in the territory of the Rubizhne-Lysychansk industrial district. 2019. (in Ukrainian). https://www.eco-lugansk.gov.ua/images/docs/monitoring/stan_pidz_vod/2019/Rub_Lis_promzona_2019.pdf
- 31. Saprykin, V.Y., Bugai, D., Skalskyi, O.S., Kubko, Y. (2015). Method for groundwater recharge and specific yield coefficient estimation for sandy soils using water table fluctuations analysis. Geol. J., 1, 89–98. (In Ukrainian) https://doi.org/10.30836/igs.1025-6814.2015.1.139053
- 32. Shestopalov, O. V., Zeitlin, M. A., Raiko, V. F. (2007). Technical solutions for burial and laying of chemical production waste in salt chambers. Bulletin of the National Technical University «KhPI», 11, 103–108 (In Russian).
- 33. Socio-economic analysis of Luhansk region. Analytical and descriptive part of the development strategy of the Luhansk region. (2019). (in Ukrainian). https://loga.gov.ua/sites/default/files/collections/profil_lugansk_17_10_2019-2-opracovane_22.10.2019.pdf
- 34. Soundararajan, P., Manivannan, A., Ko, C.H. et al. (2019). Evaluation of relative toxicity caused by deicing agents on photosynthesis, redox homeostasis, and the osmoregulatory system in creeper-type plants. Hortic. Environ. Biotechnol. 60, 175–186. https://doi.org/10.1007/s13580-018-0117-9
- 35. Steinhauser, G. (2008). Cleaner production in the Solvay Process: general strategies and recent developments. Journal of Cleaner Production, 16, 833–841. https://doi.org/10.1016/j.jclepro.2007.04.005
- 36. Suvorin, O. V., Kravchenko, I. V., Ozheredova, M. A., Zubtsov, Ye. I. & Píštěk, V. (2022). The study of properties of soda production wastes as anti-icing reagents. Journal Environmental Problems, 7(4), 163-168. https://doi.org/10.23939/ep2022.04.163
- 37. Szklarek, S., Górecka, A., Wojtal-Frankiewicz, A. (2022). The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution – A review. Science of The Total Environment, 805, 150289. https://doi.org/10.1016/j.scitotenv.2021.150289.
- 38. Vergolyas, M.R. & Goncharuk, V.V. (2016). Toxic effects of heavy metals on the hydrobionts’ organism. Journal of Education, Health and Sport, 6, 436–444. (In Russian) https://doi.org/10.5281/zenodo.56065
- 39. Xin, Z., Wenchao, Z., Zhenguang, Y. et al. (2015). Species sensitivity analysis of heavy metals to fresh-water organisms. Ecotoxicology, 24, 1621–1631. https://doi.org/10.1007/s10646-015-1500-2
- 40. Zong, Yo., Gong, J., Zhang, J., Su, Yo., Hu, C., Li, T., Wu, Yo. and Jiang, M. (2023). Research status of soda residue in the field of environmental pollution control. RSC Adv., 13, 28975–28983. https://doi.org/10.1039/D3RA04863B
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bbd8487-d031-483c-bcbf-05f4079d6ac4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.