PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Spark Plasma Sintering Temperature on Microstructure and Tthermoelectric Properties of Cu-Doped Bi0.5Sb1.495Te3 Compound

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to air pollution, global warming and energy shortage demands new clean energy conversion technologies. The conversion of industrial waste heat into useful electricity using thermoelectric (TE) technology is a promising method in recent decades. Still, its applications are limited by the low efficiency of TE materials in the operating range between 400-600 K. In this work, we have fabricated Cu0.005 Bi0.5Sb1.495Te3 powder using a single step gas atomization process followed by spark plasma sintering at different temperatures (623, 673, 723, and 773 K), and their thermoelectric properties were investigated. The variation of sintering temperature showed a significant impact on the grain size. The Seebeck coefficient values at room temperature increased significantly from 127 μVK to 151 μV/K with increasing sintering temperature from 623 K to 723 K due to decreased carrier concentration. The maximum ZT values for the four samples were similar in the range between 1.15 to 1.18 at 450 K, which suggest these materials could be used for power generation in the mid-temperature range (400-600 K).
Twórcy
autor
  • Kongju National University, Division of Advanced Materials Engineering, 275, Budae-dong, Cheonan City, Chungcheongnam-do, 330-717, Republic of Korea
  • Kongju National University, Division of Advanced Materials Engineering, 275, Budae-dong, Cheonan City, Chungcheongnam-do, 330-717, Republic of Korea
autor
  • Kongju National University, Division of Advanced Materials Engineering, 275, Budae-dong, Cheonan City, Chungcheongnam-do, 330-717, Republic of Korea
  • Kongju National University, Division of Advanced Materials Engineering, 275, Budae-dong, Cheonan City, Chungcheongnam-do, 330-717, Republic of Korea
  • Kongju National University, Division of Advanced Materials Engineering, 275, Budae-dong, Cheonan City, Chungcheongnam-do, 330-717, Republic of Korea
Bibliografia
  • [1] J. He, T. M. Tritt, Science 357, eaak9997 (2017).
  • [2] P. Dharmaiah, H. S. Kim, C. H. Lee, S. J. Hong, J. Alloys Compd. 686, 1 (2016).
  • [3] A. S. Rattner, S. Garimella, Energy 36, 6172-6183 (2011).
  • [4] M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, G. Chen, Nano Lett. 11, 2225-2230 (2011).
  • [5] K. Kim, G. Kim, H. Lee, K. H. Lee, W. Lee, Scr. Mater. 145, 41-44 (2018).
  • [6] E. B. Kim, P. Dharmaiah, K. H. Lee, C. H. Lee, J. H. Lee, J. K. Yang, D. H. Jang, D. S. Kim, S. J. Hong, J. Alloys Compd. 777, 703-711 (2019).
  • [7] K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 489, 414-418 (2012).
  • [8] T. Fang, X. Li, C. L. Hu, Q. Zhang, J. Yang, W. Q. Zhang, X. B. Zhao, D. J. Sing, T. J. Zhu, Adv. Funct. Mater. 29, 1900677 (2019).
  • [9] O. E. Femi, K. Akkiraju, B. S. Murthy, N. Ravisankar, K. Chattopadhyay, J. Alloys Compd. 682, 791-798 (2016).
  • [10] K. H. Lee, P. Dharmaiah, S. J. Hong, Scr. Mater. 162, 437-441 (2019).
  • [11] S. Seo, M. W. Oh, Y. Jeong, B. Yoo, J. Alloys Compd. 696, 1151-1158 (2017).
  • [12] E. B. Kim, P. Dharmaiah, D. Shin, K. H. Lee, S. J. Hong, J. Alloys Compd. 703, 614-623 (2017).
  • [13] Y. Yu, D. S. He, S. Zhang, O. C. Miredin, T. Schwarz, A. Stoffers, X. Y. Wang, S. Zheng, B. Zhu, C. Scheu, D. Wu, J. Q. He, M. Wuttig, Z. Y. Huang, F. Q. Zu, Nano Energy 37, 203-213 (2017).
  • [14] F. Hao, P. Qiu, Y. Tang, S. Bai, T. Xing, H. S. Chu, Q. Zhang, P. Lu, T. Zhang, D. Ren, J. Chen, X. Shi, L. Chen, Energy Environ. Sci. 9, 3120 (2016).
  • [15] B. Poudel, Q. Hao, Y. Ma, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634-638 (2008).
  • [16] W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. Copley, C. M. Brown, Q. Zhang, T. M. Tritt, Nano Lett. 10, 3283-3289 (2010).
  • [17] S. M. Yoon, P. Dharmaiah, O. E. Femi, C. H. Lee, S. J. Hong, Mater. Chem. Phys. 195, 49-57 (2017).
  • [18] S. J. Hong, B. S. Chun, Mater. Res. Bull. 38, 599-608 (2003).
  • [19] Y. Pei, A. F. May, G. J. Snyder, Adv. Energy Mater. 1, 291-296 (2011).
  • [20] H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, APL Mater. 3, 041506 (2015).
Uwagi
EN
1. This work was supported by the Basic Research Laboratory Program through the Ministry of Education of the Republic of Korea (2019R1A4A1026125). This work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CRC-15-06-KIGAM).
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bbd4c38-17f8-445e-ade8-63e59866fa56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.