PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Noise spectroscopy of resistive components at elevated temperature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Studies of electrical properties, including noise properties, of thick-film resistors prepared from various resistive and conductive materials on LTCC substrates have been described. Experiments have been carried out in the temperature range from 300 K up to 650 K using two methods, i.e. measuring (i) spectra of voltage fluctuations observed on the studied samples and (ii) the current noise index by a standard meter, both at constant temperature and during a temperature sweep with a slow rate. The 1/f noise component caused by resistance fluctuations occurred to be dominant in the entire range of temperature. The dependence of the noise intensity on temperature revealed that a temperature change from 300 K to 650 K causes a rise in magnitude of the noise intensity approximately one order of magnitude. Using the experimental data, the parameters describing noise properties of the used materials have been calculated and compared to the properties of other previously studied thick-film materials.
Rocznik
Strony
15--26
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Rzeszów University of Technology, Powstanców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Rzeszów University of Technology, Powstanców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, PL 50-370 Wrocław, Poland
autor
  • Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, PL 50-370 Wrocław, Poland
Bibliografia
  • [1] Bhattacharya, S.K., Tummala, R.R. (2000). Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates, Journal of Material Science: Materials in Electronics, 11, 253-268.
  • [2] Dziedzic, A., Kłossowicz, A., Winiarski, P., Nitsch, K., Piasecki, T., Kozioł, G., Stęplewski, W. (2011). Chosen electrical properties and stability of passive components embedded in printed circuit boards, Electrotechnical Review, 87(10), 39-44.
  • [3] Parashkov, R., Becker, E., Riedl, T., Johannes, H.-H., Kowalsky, W., (2005). Large area electronics using printing methods, Proceedings of the IEEE, 93 (7), 1321-1329.
  • [4] Dziedzic, A. (2009). Modern thick-film and LTCC passives and passive integrated components, Inform. MIDEM (J. Microelectronics, Electronic Components and Materials), 39, 191-200.
  • [5] Dziedzic, A. (2002). Electrical and structural investigations in reliability characterisation of modern passives and passive integrated components, Microelectronics Reliability, 42, 709-719.
  • [6] Kolek, A. (2006). Experimental methods of low-frequency noise, University of Technology Publications, Rzeszow, Poland.
  • [7] Stadler, A. (2011). Noise properties of thick-film resistors in extended temperature range, Microelectronics Reliability, 51, 1264-1270.
  • [8] Rocak, D., Belavic, D., Hrovat, M., Sikula, J., Koktavy, B., Pavelka, J., Sedlakova, V. (2001). Low-frequency noise of thick-film resistors as quality and reliability indicator. Microelectronics Reliability; 41, 531-542.
  • [9] Jevtić, M.M. (1995) Noise as a diagnostic and prediction tool in reliability physics. Microelectronics Reliability, 35, 455-477.
  • [10] Jevtić, M.M., Mrak, I., Stanimirović, Z. (1999). Thick-film quality indictor based on noise index measurements. Microelectronics Journal; 30. 1255-1259.
  • [11] Zarnik, M.S., Belavic, D., Sedlakova, V., Sikula, J., Kopecky, M., Sedlak, P., Majzner, J. (2013), Comparison of the intrinsic characteristics of LTCC and silicon pressure sensors by means of 1/f noise measurements, Radioengineering, 22 (1), 227-232.
  • [12] Bobalo, Y., Kolodiy, Z., Stadnyk, B., Yatsyshyn, S. (2013). Development of noise measurements. part 3. Passive method of electronic elements quality characterization, Sensors and Transducers, 152, 164-168.
  • [13] Mleczko, K., Zawiślak, Z., Stadler, A.W., Kolek, A., Dziedzic, A., Cichosz, J. (2008). Evaluation of conductive-to-resistive layers interaction in thick-film resistors, Microelectronics Reliability, 48, 881-885.
  • [14] Stadler, A.W., Kolek, A. (2007). Numerical simulations of low-frequency noise in RuO2-glass films, Proc. SPIE 6600, 66000Q.
  • [15] Balandin, A.A. (2013). Low-frequency 1/f noise in graphene devices, Nature Nanotechnology, 8(8), 549-555.
  • [16] Granqvist, C.G., Green S., Jonson, E.K., Marsal R., Niklasson, G.A., Roos, A., Topalian, Z., Azens, A., Georén, P., Gustavsson, G., Karmhag, R., Smulko, J., Kish, L.B. (2008), Electrochromic foil-based devices: Optical transmittance and modulation range, effect of ultraviolet irradiation, and quality assessment by 1/f current noise, Thin Solid Films, 516(17), 5921-5926.
  • [17] Kolek, A., Stadler, A.W., Ptak, P., Zawiślak, Z., Mleczko, K., Dziedzic, A. (2008). Noise and switching phenomena in thick-film resistors, J. Phys. D: Applied Physics, 41, 025303.
  • [18] Masoero, A., Rietto, A.M., Morten, B., Prudenziati, M. (1983). Excess noise and its temperature dependence in thick-film (cermet) resistors, J. Phys. D, 16, 669-674.
  • [19] Chen, T.M., Su, S.F., Smith, D. (1982). 1/f noise in Ru-based thick-film resistors, Solid-State Electron., 25, 821-827.
  • [20] Pellegrini, B., Saletti, R., Terreni, P., Prudenziati, M. (1983). 1/f noise in thick film resistors as an effect of tunnel and thermally activated emissions, from measures versus frequency and temperature, Phys. Rev. B, 27, 1233-1243.
  • [21] Dziedzic, A., Kolek, A., Licznerski, B.W. (1999). Noise and nonlinearity of gas sensors - preliminary results, Proc. 22nd int. Spring Seminar on Electronics Technology, Dresden-Freital (Germany), 99-104.
  • [22] Kotarski, M., Smulko, J. (2009). Noise measurement set-ups for fluctuations-enhanced gas sensing, Metrology and Measurement Systems 16, 457-464.
  • [23] Nowak, D., Miś, E., Dziedzic, A., Kita, J. (2009). Fabrication and electrical properties of laser-shaped thick-film and LTCC microresistors, Microelectronics Reliability 49, 600-606.
  • [24] Stawarz-Graczyk, B., Dokupil, D., Flisikowski, P. (2010). A method of RTS noise identification in noise signals of semiconductor devices in the time domain, Metrology and Measurement Systems, 17, 95-107.
  • [25] Sampietro, M., Fasoli, L., Ferrari, G. (1999). Spectrum analyzer with noise reduction by cross-correlation technique on two channels, Review of Scientific Instruments, 70(5), 2520-2525.
  • [26] Kolek, A., Ptak, P., Mleczko, K., Wrona, A. (2001). A further improvement of the measuring technique of bulk and contact components of resistance noise, Proc. 16th Int. Conf. Noise in Physical Systems and 1/f Fluctuations, ICNF 2001, Gainesville, Florida, USA, 713-716.
  • [27] Stadler, A.W. (2007). Noise signal analyzer for multi-terminal devices, Proc. 31st Int. Conf. of IMAPS-CPMT Poland Chapter, Rzeszów - Krasiczyn, Poland, 413-416.
  • [28] Stadler, A. (2011). Virtual instruments in low-frequency noise spectroscopy experiments, Proc. 35th Int. Conf. of IMAPS-CPMT Poland Chapter, Gdańsk-Sobieszewo, 311-316.
  • [29] Test Method Standard Electronic and Electrical Component Parts, MIL-STD-202G, 2002.
  • [30] Stadler, A.W., Zawiślak, Z., Dziedzic, A., Stęplewski, W. (2012). Studies of noise in polymer thick-film resistors embedded in printed circuit boards, In Microelectronic Materials and Technologies, vol. 1, 82-97, Koszalin Technical University Monograph Series, Monograph No. 231.
  • [31] Kolek, A., Ptak, P., Dziedzic, A. (2003). Noise characteristics of resistors buried in low-temperature co-fired ceramics, J. Phys. D: Applied Physics, 36, 1009-1017.
  • [32] Vandamme, L.K.J., Casier, H.J. (2004). The 1/f noise versus sheet resistance in poly-Si is similar to poly-SiGe resistors and Au-layers. Proc. of 34th European Solid-State Device Research Conf. Leuven, Belgium, 21-23.
  • [33] Hooge, F. N.(1969), 1/f noise is no surface effect, Phys. Lett., 29A, 139-140.
  • [34] Unger, M., Fleig, J., Ahrens, M., Smetana, W., Radosavljevič, G. (2010). Permittivity and conductivity of various LTCC-tapes at high temperatures, Proc. 33rd Int. Spring Seminar on Electronics Technology, 93-98.
  • [35] Giusi, G., Scandurra, G., Ciofi C. (2013). Estimation errors in 1/fγ noise spectra when employing DFT spectrum analyzers, Fluctuation and Noise Letters, 12(1), 1350007.
Uwagi
EN
The work has been supported from Grant DEC-2011/01/B/ST7/06564 funded by the National Science Centre (Poland) and from Rzeszow University of Technology Project U-235/DS. Studies have been performed with the use of equipment purchased in the project No POPW.01.03.00-18-012/09 from the Structural Funds, The Development of Eastern Poland Operational Programme co-financed by the European Union, the European Regional Development Fund.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bbc877f-10f2-4d98-ba73-a96926bfedd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.