PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of electro-activation and eggshell powder on the neutralization of acid mine drainage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acid mine drainage (AMD) production by sulfide mine tailing (SMT) is a major environmental preoccupation because it can degrade water surface quality on account of its strong acidity and advanced content of sulfide, iron (Fe) and other metals and metalloids. Acid neutralization and the precipitation of metals present in AMD were carried out by electro-activation with ion-exchange membranes, which is based on the self-generation of necessary conditions for acid neutralization and metal precipitation. The treatment of SMT was carried out by using an electro-activation cell generated alkaline solution in the cathode compartment. After 60 min of electro-activation, a pHcatholyte of 7.9-9.6, depending on the experimental conditions, was obtained. The absence of Fe and other trace metal ions in the catholyte provide evidence that the electro-activation of SMT promotes the precipitation of insoluble trace metals in the cathode compartment. This approach can be applied to real conditions in combination with a pretreatment of SMT neutralization, inwhich biological calcareous amendments are available. Finally, the electro-activation technology of acid mine drainage may be a feasible, cost-effective approach for SMT neutralization because it focuses on sustainable development.
Rocznik
Strony
73--82
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Department of Soil Sciences and Agri-Food Engineering, Universite Laval, Quebec, QC, G1V 0A6, Canada
autor
  • Department of Soil Sciences and Agri-Food Engineering, Universite Laval, Quebec, QC, G1V 0A6, Canada
autor
  • Department of Soil Sciences and Agri-Food Engineering, Universite Laval, Quebec, QC, G1V 0A6, Canada
Bibliografia
  • 1. Aït Aissa, A., & Aïder, M. (2014). Electro-catalytic isomerization of lactose into lactulose: The impact of the electric current, temperature and reactor configuration. International Dairy Journal, 34(2), 213-219.
  • 2. Britto-Costa, P. H., Pereira-Filho, E. R., & Ruotolo, L. A. M. (2014). Copper electrowinning using a pulsed bed three-dimensional electrode. Hydrometallurgy, 144-145, 15-22.
  • 3. Britto-Costa, P. H., & Ruotolo, L. A. M. (2014). Optimization of copper electrowinning from synthetic copper sulfate solution using a pulsed bed electrode. Hydrometallurgy, 150, 52-60.
  • 4. Bunce, N. J., Chartrand, M., & Keech, P. (2001). Electrochemical treatment of acidic aqueous ferrous sulfate and copper sulfate as models for acid mine drainage. Water Research, 35(18), 4410-4416.
  • 5. Buzzi, D. C., Viegas, L. S., Rodrigues, M. A. S., Bernardes, A. M., & Tenório, J. A. S. (2013). Water recovery from acid mine drainage by electrodialysis. Minerals Engineering, 40, 82-89.
  • 6. Cardarelli, F. (2011). Canada Patent No 2,663,652 C. Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes.
  • 7. Chartrand, M. M. G., & Bunce, N. J. (2003). Electrochemical remediation of acid mine drainage. Journal of Applied Electrochemistry, 33, 259-264.
  • 8. Cifuentes-Araya, N., Pourcelly, G., & Bazinet, L. (2011). Impact of pulsed electric field on electrodialysis process performance and membrane fouling during consecutive demineralization of a model salt solution containing a high magnesium/calcium ratio. Journal of Colloid and Interface Science, 361(1), 79e89.
  • 9. Cooper, W. C. (1985). Advances and future prospects in copper electrowinning. Journal of Applied Electrochemistry, 15, 789-805.
  • 10. Flores, R., Garcia, M. G., Peralta-Hernandez, J. M., Hernandez-Ramirez, A., Mendez, E., & Bustos, E. (2012). Electro-remediation in the presence of ferrous sulfate as an ex-situ alternative treatment for hydrocarbon polluted soil. International Journal of Electrochemical Science, 7, 2230-2239.
  • 11. Haghighi, K. H., Moradkhani, D. M., Sedaghat, B., Najafabadi, R. M., & Ali, B. (2013). Production of copper cathode from oxidized copper ores by acidic leaching and two-step precipitation followed by electrowinning. Hydrometallurgy, 133, 111-117.
  • 12. Hansen, H. K., Ribeiro, A. B., Mateus, E. P., & Ottosen, L. M. (2007). Diagnostic analysis of electrodialysis in mine tailing materials. Electrochimica Acta, 52(10), 3406-3411.
  • 13. Iurash, C. A., Nikonenko, V. V., Pismenskaya, N. D., Zabolotsky, V. I., & Volodina, E. I. (1999). Dependence of salt and water ion fluxes through ion-exchange membranes under electrodialysis on the ion-exchange bed composition. Desalination, 124(1), 105-113.
  • 14. Kurniawan, T. A., Chan, G. Y. S., Lo, W.-H., & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1-2), 83-98.
  • 15. Leahy, M. J., & Schwarz, M. P. (2014). Flow and mass transfer modelling for copper electrowinning: Development of instabilities along electrodes. Hydrometallurgy, 147-148, 41-53.
  • 16. Luptakova, A., Ubaldini, S., Macingova, E., Fornari, P., & Giuliano, V. (2012). Application of physical-chemical and biological-chemical methods for heavy metals removal from acid mine drainage. Process Biochemistry, 47(11), 1633-1639.
  • 17. Marti-Calatayud, M. C., Buzzi, D. C., Garcia-Gabaldon, M., Ortega, E., Bernardes, A. M., Tenorio, J. A. S., et al. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127.
  • 18. Mokmeli, M., Dreisinger, D., & Wassink, B. (2015). Modeling of selenium and tellurium removal from copper electrowinning solution. Hydrometallurgy, 153, 12-20.
  • 19. Pokonova, Y. V. (2007). New reference book of chemist and technologist. Raw materials and organic and inorganic industrial products (Vol. 2). St. Petersburg: Professional Publ.
  • 20. Saldadze, K. M., Pashkov, A. B., & Titov, V. S. (1960). Ion-exchange high-molecular compounds. Gosrhimizdat: State Chemical Publishing House.
  • 21. Shelp, G. S., Chesworth, W., & Spiers, G. (1996). The amelioration of acid mine drainage by an in situ electrochemical method; part 2: Employing aluminium and zinc as sacrificial anodes. Applied Geochemistry, 11(3), 425-432.
  • 22. Stauffer, T. E., & Lovell, H. L. (1968). The oxygenation of iron II solutions relationships to coal mine drainage treatment. Retrieved June 1, 2017 from https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/13_2_MINNEAPOLIS_04-69_0088.pdf.
  • 23. Tamura, H., Goto, K., Yotsuyanagi, T., & Nagayama, M. (1974). Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta, 21, 314-318.
  • 24. Tanaka, Y. (2010). Water dissociation reaction generated in an ion exchange membrane. Journal of Membrane Science, 350(1e2), 347e360.
  • 25. Tanaka, H., Hirakata, Y., Kaku, M., Yashida, R., & Takemura, H. (1996). Antimicrobial activity of superoxidized water. Journal of Hospital Infection, 34, 43-49.
  • 26. Walsh, C. F., & Reade, G. W. (1994). Electrochemical techniques for the treatment of dilute metal solutions. In C. A. C. Sequeira (Ed.), Environmental oriented electrochemistry (pp. 3-44). Elsevier Science B.V.
  • 27. Zundel, G. (1969). Hydration and intermolecular interaction infrared investigations of polyelctrolyte membranes. New York, USA: Academic Press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bb9444b-0b37-4ad5-bfa4-13a8db4aba07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.