PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Thermophilic Fermentation Method to Obtain Environmentally Friendly Organic Fertilizer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the authors obtained samples of biological fertilizer by thermophilic fermentation of substrates of different compositions. Two types of effluent were studied in the experiment: food plant waste with the addition of cattle manure and liquid pig manure with litter cattle manure. To activate the process of obtaining fertilizer, the Agrarka biological preparation was added containing a complex of microorganisms and bacteria that accelerate the decomposition process. A detailed chemical analysis of the liquid and solid fractions of the raw materials and the obtained products was carried out for the content of total phosphorus (P), carbon (C), potassium (K), nitrogen (N), ammonium nitrogen (NH4+), organic matter, dry matter, cadmium (Cd), cobalt (Co), manganese (Mn), copper (Cu), nickel (Ni), mercury (Hg), lead (Pb), chromium (Cr), zinc (Zn), and arsenic (Ar). The indicators of acidity and ash content were determined and microbiological analysis was carried out. The obtained results showed that the thermophilic temperature regime of fermentation accelerated the decomposition process, positively affected the total content of the main nutrients in the studied substrates, and negatively affected the vital activity of microorganisms. In two types of effluents, there was a significant increase in the level of ammonium nitrogen by up to 60%, a decrease in the total carbon content by 15–30%, and dry and organic matter by 10–12% in both liquid and solid phases. However, in the effluent from food plant waste with the addition of cattle manure, the indicators increased by 13% in total carbon and by 8.2% in dry matter, and the ash content was 3 times lower than in the second effluent. Thus, thermophilic fermentation obtained two types of effluents with high-quality indicators corresponding to environmental and sanitary standards, since the content of microorganisms and heavy metals did not exceed the permissible limits.
Słowa kluczowe
Rocznik
Strony
202--216
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Sh. Ualikhanov Kokshetau University, 76 Abaya str., 020000, Kokshetau, Kazakhstan
  • Sh. Ualikhanov Kokshetau University, 76 Abaya str., 020000, Kokshetau, Kazakhstan
  • Kokshetau University named after A. Myrzakhmetov, 189 Auezov str., 020000, Kokshetau, Kazakhstan
  • Sh. Ualikhanov Kokshetau University, 76 Abaya str., 020000, Kokshetau, Kazakhstan
Bibliografia
  • 1. Abanades, S., Abbaspour, H., Ahmadi, A., Das, B., Ehyaei, M.A., Esmaeilion, F., El Haj Assad, M., Hajilounezhad, T., Jamali, D.H., Hmida, A., Ozgoli, H.A., Safari, S., AlShabi, M., Bani-Hani, E.H. 2022. A critical review of biogas production and usage with legislations framework across the globe. International Journal of Environmental Science and Technology, 19, 3377–3400. https://doi.org/10.1007/s13762-021-03301-6
  • 2. Al Seadi, Т., Lukehurst, C.T. 2012. Quality management of digestate from biogas plants used as fertilizer. IEA Bioenergy, 38.
  • 3. Alfa, M.I., Adie, D.B., Igboro, S.B., Oranusi, U.S., Dahunsi, S.O., Akali, D.M. 2014. Assessment of biofertilizer quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings. Renewable Energy, 63, 681–686. https://doi.org/10.1016/j.renene.2013.09.049
  • 4. Appels, L., Baeyens, J., Degrève, J., Dewil, R. 2008. Principles and potential of the anaerobic digestion of waste–activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781. http://dx.doi.org/10.1016/j.pecs.2008.06.002
  • 5. Arthurson, V. 2009. Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – Potential benefits and drawbacks. Energies, 2(2), 226–242. https://doi.org/10.3390/en20200226
  • 6. Bayazitova, Z.E., Kurmanbayeva, A.S., Kakabayev, A.A., Zhaparova, S.B., Baituk, G.S., Zandybay, A., Baikenova, G.E. 2022. Otsenka ekologicheskoi opasnosti filtratsionnykh vod poligona tverdykh bytovykh otkhodov g. Kokshetau [Assessment of the environmental hazard of seepage waters of the landfill for municipal solid waste in the city of Kokshetau]. Vestnik KazNU. Seriya ekologicheskaya [Series” Ecological studies], 70(1), 46–55. https://doi.org/10.26577/EJE.2022.v70.i1.05
  • 7. Cavalli, D., Cabassi, G., Borrelli, L., Geromel, G. Bechini, L., Degano, L., Gallina, P.M. 2016. Nitrogen fertilizer replacement value of undigested liquid cattle manure and digestates. European Journal of Agronomy, 73, 34–41. http://dx.doi.org/10.1016/j.eja.2015.10.007
  • 8. Comparetti, A., Febo, P., Greco, C. 2013. Current state and future of biogas and digestate production. Bulgarian Journal of Agricultural Science, 19(1), 1–14.
  • 9. Denisov, V.A. 2006. Ecological aspects of preparation for the use of bespodstilochny manure. In: Materials of scientific and practical conference. Agroecological problems of the use of organic fertilizers based on industrial animal husbandry waste. All-Russian Research, Design and Technological Institute of Organic Fertilizers and Peat, Vladimir, 54–57. (in Russian)
  • 10. Eickenscheidt, T., Freibauer, A., Heinichen, J., Augustin, J., Drösler, M. 2014. Short-term effects of biogas digestate and cattle slurry application on greenhouse gas emissions affected by N availability from grasslands on drained fen peatlands and associated organic soil. Biogeosciences, 11(22), 6187–6207. https://doi.org/10.5194/bg-11-6187-2014
  • 11. Eskov, A.I., Lukin, S.M., Merzlaya, G.E. 2018. Current state and prospects for the use of organic fertilizers in Russian agriculture. Plodorodie, 1(100), 20–23. (in Russian)
  • 12. Gosstandart of Russia. 1996. GOST 30181.1-94 Udobreniya mineral’nyye. Metod opredeleniya summarnoi massovoi doli azota v slozhnykh udobreniyakh (v ammoniinoi i amidnoi formakh) [GOST 30181.1-94 Mineral fertilizers. Method for determining the total mass fraction of nitrogen in complex fertilizers (in ammonium and amide forms)]. IPK Izdatel’stvo standartov, Moscow. (in Russian)
  • 13. Han, S.K., Shin, H.S. 2004. Performance of an innovative two stage process converting food waste to hydrogen and methane. Journal of the Air and Waste Management Association, 54(2), 242–249. https://doi.org/10.1080/10473289.2004.10470895
  • 14. Helias, A., Brockmann, D. 2014. Use of fertilizing residues by agricultural activities in LCA studies. In: R. Schenck, D. Huizenga (Eds.), Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector, October 8–10, 2014, San Francisco, USA. American Center for Life Cycle Assessment, Vashon, 523–532.
  • 15. Kosnikov, S.N., Khetsuriani, K.T., Kamalova, K.M., Pokhvala, V.V. 2021. The main problems of food security and their solution. Vestnik Akademii znanii, 47(6), 204–210. (in Russian) https://doi.org/10.24412/2304-6139-2021-6-204-210
  • 16. Kumar, S., Malav, L.C., Malav, M.K., Khan, S.A. 2015. Biogas slurry: Source of nutrients for eco-frendly agriсulture. International Journal of Extensive Research, 2, 42–46.
  • 17. Kurmanbayeva, A., Bayazitova, Z., Talal, A., Kakabayev, A., Zhaparova, S. 2022. Waste accumulation and geoecological assessment of the territories around the landfills in Kokshetau. GEOMATE Journal, 23(96), 179–185. https://doi.org/10.21660/2022.96.j2384
  • 18. Kuszel, M., Lorencowicz, E. 2015. Agriсultural use biogas degistate as a replacement fertilizers. Agriсultural and Agriсultural Science Procedia, 7, 119–124. http://dx.doi.org/10.1016/j.aaspro.2015.12.004
  • 19. Lin, Q., De Vrieze, J., Li, C., Li, J., Li, J., Yao, M., Hedenec, P., Li, H., Li. T., Rui, J., Frouz, J., Li, X. 2017. Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process. Water Research, 123, 134–143. https://doi.org/10.1016/j.watres.2017.06.051
  • 20. Macadi, M., Tomocsik, A., Orocz, V. 2012. Digestate: A new nutrient sourse – Review. In: S. Kimar (Ed.), Biogas. In Tech, Croatia, 295–310. http://dx.doi.org/10.5772/31355
  • 21. Mantovi, P., Fabbri, C., Soldano, M., Piccinini, S. 2009. La separazione del digestato aumenta il potere fertilizzante. L’informatore Agrario, 43, 55–58. (in Italian)
  • 22. Mineral fertilizers: types, properties, application. 2022. https://plodorod.net/vidy-udobrenij/mineralnye/ (access date: October 21, 2022).
  • 23. Mukhuba, M., Roopnarain, A., Adeleke, R., Moeletsi, M., Makofane, R. 2018. Comparative assessment of bio-fertilizer quality of cow dung and anaerobic digestion effluent. Cogent Food & Agriculture, 4(1), 14–35. http://dx.doi.org/10.1080/23311932.2018.1435019
  • 24. Price, V. 1976. Analytical atomic absorption spectroscopy. Mir, Moscow, 235. in Russian)
  • 25. QazaqZerno. 2017. Kazakhstan: Fertilizers as a factor in raising the efficiency of agriculture. Available at: https://kazakh-zerno.net/128318-kazakhstan-udobreniya-kak-faktor-pod-ema-effektivnosti-zemledeliya/ (access date: October 21, 2022). (in Russian)
  • 26. Qi, G., Pan, Z., Sugawa, Y., Andriamanohiarisoamanana, F.J., Yamashiro, T., Iwasaki, M., Kawamoto, K., Ihara, I., Umetsu, K. 2018. Comparative fertilizer properties of digestates from mesophilic and thermophilic anaerobic digestion of manure: Focusing on plant growth promoting bacteria (PGPB) and environmental risk. Journal of Material Cycles and Waste Management, 20(3), 1448–1457. https://doi.org/10.1007/s10163-018-0708-7
  • 27. Riva, С., Orzi, V., Carozzi, M., Acutis, M., Boccasile, G., Lonati, S., Tambone, F., D’Imporzano, G., Adani, F. 2016. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Science of The Total Environment, 547, 206–214. https://doi.org/10.1016/j.scitotenv.2015.12.156
  • 28. Rosstandart. 2008. GOST R 52991-2008 Water. Methods for determining the content of total and dissolved organic carbon. Stanfartinform, Moscow. (in Russian)
  • 29. Sadchikov, A.V. 2017. The use of methane effluent to restore the natural cycle of agrogeosystems. Uspekhi sovremennogo estestvoznaniya, 1, 72–76. (in Russian)
  • 30. Salkhozhayeva, G.M., Abdiyeva, K.M., Arystanova, S.Y., Ultanbekova, G.D. 2022. Technological process of anaerobic digestion of cattle manure in a bioenergy plant. Journal of Ecological Engineering, 23(7), 131–142. https://doi.org/10.12911/22998993/149516
  • 31. Sanitary Control in the Food Industry. 2009. Sanitary assessment of the soil by microbiological indicators. Available at: http://smikro.ru/?p=166 (access date: October 21, 2022). (in Russian)
  • 32. Shitophyta, L.M., Padya, S.A., Zufar, A.F., Rahmawati, N. 2022. The impact of alkali pretreatment and organic solvent pretreatment on biogas production from anaerobic digestion of food waste. Journal of Ecological Engineering, 23(12), 179–188. https://doi.org/10.12911/22998993/155022
  • 33. Sogn, T.A., Dragicevic, I., Linjordet, R., Krogstad, T., Eijsink, V.G.H., Eich-Greatorex, S. 2018. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. International Journal of Recycling of Organic Waste in Agriculture, 7(1), 49–58. https://doi.org/10.1007/s40093-017-0188-0
  • 34. Sridhar, M.K.C., Arinola, A.M. 1991. Managing industrial waste in Nigeria. Biocycle, 32, 65.
  • 35. Tarasov, S.I., Kovalev, D.A., Karaeva, Yu.V. 2018. Application of biogas plant effluent as fertilizer for organic farming. Vestnik Ulyanovskoi gosudarstvennoi selskokhozyaistvennoi akademii, 3(43), 91–97. (in Russian) https://doi.org/10.18286/1816-4501-2018-3-91-97
  • 36. United Nations. n.d. Demograficheskie izmeneniya [Demographic changes]. Available at: https://www.un.org/ru/un75/shifting-demographics / (access date: October 21, 2022). (in Russian)
  • 37. USSR Gosstandart. 1975. GOST 20851.2-75 Mineral fertilizers. Methods for the determination of phosphates. IPK Izdatel’stvo standartov, Moscow (in Russian).
  • 38. USSR Gosstandart. 1977. GOST 15113.8-77 Food concentrates. Ash determination methods. IPK Izdatel’stvo standartov, Moscow. (in Russian)
  • 39. USSR Gosstandart. 1985a. GOST 26423-85 Methods for determining specific electrical conductivity, PH and dense residue of water extract. Stanfartinform, Moscow. (in Russian)
  • 40. USSR Gosstandart. 1985b. GOST 26713-85 Organic fertilizers. Method for determining moisture and dry residue. Izdatel’stvo standartov, Moscow. (in Russian)
  • 41. USSR Gosstandart. 1985c. GOST 26718-85 Organic fertilizers. The method for determining total potassium. IPK Izdatel’stvo standartov, Moscow. (in Russian)
  • 42. Zdeb, M. 2021. Anaerobic digestion of wheat straw pretreated with soaking in water and alkali medium. Journal of Ecological Engineering, 22(9), 246–254. https://doi.org/10.12911/22998993/141366
  • 43. Zelonyye pobedy. 2022. Humus production” a business idea. Available at: https://zelniko.ru/vidyothodov/proizvodstvo-komposta-v-promyshlennyh-masshtabah-2.htm (access date: October 21, 2022). (in Russian)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bb37864-13fe-4c34-b547-153d146da866
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.