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         We explain, motivation behind this work and briefly describe foundation of new method 

which we have developed for efficient solution in PC environment of the nonlinear 

propagation equation with the boundary conditions applied for both circular and not circular 

transducers (like array). Comparison between new and old method will be presented for 

strongly nonlinear disturbance. At the end we will demonstrate the results of the numerical 

calculations of the nonlinear field propagating from the array. 

 

 

 INTRODUCTION 

         Theoretical analysis of the nonlinear scalar wave equation, describing the propagation of 

sound , made it possible to develop a very efficient numerical code solving  this equation in 

the PC domain  for one-side  boundary problems. The new method applied for axially 

symmetrical  (2D+t) problems makes the calculation times at least several times shorter for 

weak nonlinearities. In the boundary cases without the axial symmetry, so in fact 3D+t, 

numerical costs – demanded memory size and calculation time become two orders of 

magnitude smaller in relation to methods used previously. This enables in general to solve 

this kind of problems by means of computers of the PC class in the case of a strong 

nonlinearity[1]. 

         In the ultrasonography nowadays more often used are multielement transmitting probes.     

Fig.1 shows for example the diagram of arrangement of active piezoelectric elements 

(antennas) applied in such a heads (convex). This is also a good illustration showing the 

geometry of boundary conditions which are characteristic for 3D+t problems. The electronic 

control of the phase and amplitude, stimulating the piezoelectric active elements, makes it 

possible to deflect and to form time-space characteristics of the ultrasonic beam.  
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The developed numerical code provides information, which make it possible to obtain all 

stationary and dynamic characteristics of the field generated by such a probe and especially its 

time-spatial (4D) visualization.  

         In this way such a solver, besides of pure scientific applications of solving equations of 

nonlinear acoustics, can be used as a basic tool to support and rationalize the process of design 

of the probe as a source of the acoustic field with finite amplitudes. It allows us 1) To test the 

scientific ideas for possible practical applications. 2) To evaluate the materials. 3) To choice 

working conditions to optimize the beam shape. 4) Determination of the influence of 

technological defects on the distribution of the acoustic field. 5) Identification of properties of 

transmitting probes by comparison of measured and computed fields. 6) Calibration of 

hydrophones. 7) Determination of secondary effects – positive like hiperthermia and negative 

thermal effects, mechanical effects  - determination of safe radiation doses. 

The results obtained in solving of some problems mentioned above by means of the solver, 

designed by the present authors, were already published [2],[3],[4] and  presented during  

many conferences [5],[6]. Therefore we will reduce our presentation, firstly to show the 

fundamental theoretical idea which is the basis of a new method of solving nonlinear 

problems of acoustics and the design of the mentioned solver. Secondly to compare the 

computation results which were obtained by means of the old method (OLD METHOD) and 

the new one (NEW METHOD). 

          For axially symmetrical disturbances (2D + t) Fig.1, generated by circular sources, the 

above mentioned problems can be and are solved by means of codes used in PC environments 

on the basis of methods known since many years [7]. In such a case the expanding power of 

processors have a distinct effect on the performance of these solvers. However even then it 

can occur that the computation takes a long time of many hours. Description of the fields 

generated by sources of arbitrary shape, particularly like arrays, requires - in respect to the 

fields generated by circular sources - to introduce an additional spatial dimension; it means 

that they are really 3D+time see Fig.1. As a result even in the trivial case the size of the set of 

samples representing the generated field increases no less than two orders of magnitude in 

respect to axially symmetrical disturbances. It causes qualitatively different requirements for 

solving problems of this type. The method used up to now for circular sources are for array 

not sufficient – excluding the stimulation by means of continuous waves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

  

 

   

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. One-dimensional (left) and two dimensional, one-side boundary values problems. 

 

1. NONLINEAR PROPAGATION MODEL 
 

1.1.General description 

         In the dimensionless system of independent and dependent variables with the retarded 

time the equation describing propagation of acoustical disturbances in the lossy and nonlinear 

medium has the following shape 

                            
2PP2P2P A   qz                                            (1) 

where:    Laplace operator;  - operator of gradient;  z,x - dimensionless coordinates 

in space,  yx,x - in the Cartesian coordinate system, rx - in cylindrical coordinate 

system for axially symmetrical problems (in respect to the axis 0–z); )( zt  –

dimensionless retarded time, t– dimensionless time; ),,(PP zx – dimensionless pressure; A - 

operator of the convolution type, describing dispersion (absorption), in the time representation 
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AP , )(AA  -kernel of the operator A (for more details see [8],[9]). The following 

normalization in Eq.(1) were used: 
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where: )',','('P zx - pressure; )',,( '' zx – dimensional coordinates; 0P -characteristic 

pressure; 00 ,c – are equilibrium density and sound speed, respectively,  - exponent of the 

adiabate or 1)/(  AB - parameter of nonlinearity. Imposing the relation 000 cK  for 

the values of 0K and 0 , which normalize space and time means the acceptance of a common 

measure for the distance in space and in time – in radians.  

         Equation (1) should become complete by boundary conditions. In both geometrical 

cases those conditions can be created as an effect of considerations or a result of 

measurements carried out near to the source of the disturbance. For circular sources we 

assume the apodisation in amplitude and in phase along the axis r. For non circular sources 

we suppose the spatial distribution of the orientation of transmitting elements (plane or not 

plane) and individual amplitude-phase apodisation. In both cases the time excitation can be 

changed from short pulses up to the continuous waves. 

  

1.2. OLD and NEW methods 

         It is assumed that the Eq.(1) possesses the only one solution. Of course every function 

can be represented in many ways. Therefore we suppose that the solution P of Eq.(1) can be 

represented by the series R
o  

which is defined by the right side of the formula (4) or by the 

series R given be Eq.(5)  
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where:   NnCn ,...,1,  - Fourier spectrum oR ; N – effective dimension of the representation 
oR ; Theoretically N , then 01 N ;   MmPm ,...,1,  - quasi spectrum; M – effective 

dimension of the representation R. Theoretically M , then 01 M ; Nc - dimensionless 

filling frequency of the boundary pulse (carrier frequency), number of cycles with the period 

of 
'

1 fc  contained in the window.  

         Now – we will explain what we mean here by terms “OLD” and “NEW” method or 

“OLD”, “NEW” representation. 

        The black bold plots below and above on Fig.2 represent typical pulse time shape and the 

envelope of their Fourier spectrum obtained from calculations or measurements under 

conditions of the nonlinear propagation. 

        The formula (4) represents the decomposition of the disturbance into Fourier series in a 

given point in space- that means on superposition sin waves unbounded in time. Vertical lines 

on Fig.2 correspond to coefficients nC  of this decomposition. They are calculated after the 



substitution of this formula into the nonlinear wave propagation equation (1). And the 

procedure based on representation (4) we call here as OLD method. This is standard 

representation used from dozen years especially for description and numerical calculations of 

the axis symmetrical nonlinear acoustical field propagation ( ),(),( zrCzC nn x  see [6]). 

         By NEW method we mean the treatment which is based on the formula (5). In this case 

the disturbance is presented as the superposition sin waves of bounded in time (we may say 

wavelets) )exp(  NmiPm with carrier frequencies being harmonics in respect to the 

fundamental carrier Nc , NcmNm  . Middle part of Fig.2 illustrate symbolically this idea. 

The series (5) can be interpreted as the quasi Fourier (because ),,( zPm x depends on time 

however slowly in respect to )exp(  Ncim ) superposition of pulses with the envelopes of mP  and 

carrier frequencies of Nm . The assumed shape of the solution (5) is a mathematical 

formalization of a observation series of spectra of nonlinear disturbances which are obtained 

in numerical simulations, observed experimentally, and also after analyzing the influence of 

the nonlinear term on the disturbance. 

         The Fourier spectrum of the disturbance P ,  ),,(P),,(P zFnzf xx   can be interpreted 

as the superposition of wavelets Fourier spectra 
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The spectral structure of (6) was shown schematically in Fig.2 by separation of components 

)(..., mNcnfPm   of the sum (6). In Fig.2 it was shown that the successive components of the 

sum can of course  “overlap – intersect “ themselves more or less depending on the relative 

band width mfP (calculated in relation to Nc ) it means depending on the duration time and on 

the shape of the envelope mP of the wavelet. Although the frequencies mNcnm   are 

distinguished in the notation (5) and (6) it does not mean that they are the coordinates of local 

spectral maxima. It results from the experiment, numerical calculation and theoretical 

considerations that there can exist and exists a small shift of the frequency mdn of the local 

spectral maximum to the position mm dnnn max  caused by the geometry of the source 

(especially in the case of an array) by dispersion (absorption) in the medium and quasi 

dispersion. One should stress that the notations (5),(6) do not contain limitations excluding 

the above described and showed in Fig.2 phenomena, although it clearly accentuated the 

fundamental sound and its harmonics . In the middle part of the figure there are shown 

schematically reconstruction of the wavelets )exp(),,(  imNczPm x from their spectra 

),,( mNcnzfPm x  and in bottom the reconstruction of disturbances from the wavelets.  

         Strictly NEW representation together with nonlinear wave equation produces several 

methods of different rank of accuracy and complication which permit to determine mP . It is an 

interesting however, very wide problem. Therefore in this paper we limit our presentation to 

the results obtained by means of the simplest method results from (1),(3),(5) .  

         If R
o 

and R are solutions of the same boundary problem then of course 0 RRo . For 
oR and R obtained numerically it can be only  RRo .  However, it can be easily shown 

that for the acceptable differences of   the relationship between effective dimensions of the 

disturbance representation  (4),(5) is the following NcMN  . 

        Cost of calculations of the nonlinear interaction is proportional to 2P
 
i.e. depends on the 

actual dimension  (N or M) of the representation of P. That means; approximate relation 



between costs of the NEW and OLD methods is proportional to 21 Nc , memory reservation 

to Nc1 (for methods presented in this paper) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Decomposition of the )),,(Re(P zR x , throughout wavelets )exp(),,(  imNczPm x , 

their Fourier spectra ),,( mNcnzfPm x , in to full spectrum ),,( zfR x  and back. 

 

2. COMPARISION NEW/OLD 
 

         We show below in common plots the results of numeral solutions of Eq.(1) by means of 

the method using  representations (4) –OLD METHOD and representations (5) – NEW 

METHOD. Solved was an axially symmetric problem (Fig.1 – left). As the source a circular 

transducer 30 mm in diameter, with the geometrical focus 85 mm, excited by pulses with 

rectangular envelope of the frequency 2 MHz with the pressure amplitude  Po = 0.25 MPa 

was used. A uniform apodisation along the axis r was assumed. Two cases were calculated; a 

short 2 cycles excitation time  (Fig.3) and long excitation time of 8 cycles (Fig.4). 

         The comparison of the two methods, for the case of boundary conditions leading to the 

problems of 3 D+t (Fig.1 – right), was in our case impossible as explained in the introduction. 

It should be noted that the requirements of the numerical code, which is based on the NEW 

method, are much higher in its simplest version for calculations of circular sources than for 

sources the array type. It results, paradoxically, from the ordering of the field (higher 

symmetry for the circular source). So, if the numerical code operates successfully for circular 

sources, it works for other sources too.  
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Fig.3. Comparison NEW-OLD methods. Short time excitation- two cycles. 
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Fig.4. Comparison NEW-OLD methods. Long time excitation- eight cycles. 

 

        Time of the calculations for OLD method-6 hours; for NEW method-18 minutes. 
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3. SOME RESULTS FOR ARRAY 

          In Figs.5,6  we present the spatial distributions corresponding to the carrier  and next 

two harmonics (in respect to the carrier) of the 20
o
 deflected acoustic beam generated by 128 

elements linear array with pitch 0.2mm and the elevation of 6 mm. The transmitted pulse is 

shown in Fig.3. Carrier frequency was equal to 7.5 MHz. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.5. Spatial distributions of the acoustic beam corresponding to the carrier frequency 7.5 

MHz. Spatial scales in mm. Logarithmic value scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.6. Spatial distributions of the second and third harmonics: a) in z-x plane b) in focal x-y 

plane  z=47mm. Spatial scales in mm. Logarithmic value scale. 
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4. CONCLUSION 
          

         At the begin we noted that the OLD method is used in our considerations as the 

reference method. The obtained results show a satisfactory agreement in amplitude and an 

excellent in phases, independently of the pulse duration. Differences between them are visible 

in the small time scale, it means that they are formed at very high frequencies. One can 

observe that the agreement rapidly increases with the distance from the beam axis.  
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