Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Poprawa właściwości gruntów gliniastych w fundamentach poprzez zagęszczanie i integrację włókien i cementu
Języki publikacji
Abstrakty
Clay soils present significant challenges in engineering applications, particularly in the design and construction of foundations, due to their susceptibility to swelling and shrinkage. This research investigates the enhancement of clay soils through the incorporation of fibres, compaction, and cement, based on a comprehensive series of tests conducted at the Public Works Laboratory in Adrar, southern Algeria. The tests adhered strictly to technical standards in soil mechanics, examining the physical, mechanical, and thermal properties of the clay soil. The results demonstrated that applying a compressive strength of 2.5 MPa and incorporating palm and glass fibres in proportions ranging from 0% to 0.3% reduced bulk density by 0.95% to 7%. The capillary water absorption rate increased by 10.61% to 12.63%, while compressive strength improved by 11.4% to 34.37%. Furthermore, thermal conductivity decreased by 0.71% to 11.9%. These findings provide valuable insights into the properties of clay soils and the observed improvements. It can be concluded that soil enhancement through various materials and fibres is viable and yields positive outcomes in geotechnical applications.
Gleby gliniaste, ze względu na podatność na pęcznienie i kurczenie, stanowią poważne wyzwanie w zastosowaniach inżynieryjnych, szczególnie w projektowaniu i budowie fundamentów. Niniejsze badania oparte na kompleksowej serii testów, przeprowadzonych w Laboratorium Robót Publicznych w Adrar w południowej Algierii, dotyczą wzmocnienia gruntów gliniastych poprzez włączenie włókien, zagęszczenie i użycie cementu. Zgodne ze standardami technicznymi w zakresie mechaniki gleby testy badały właściwości fizyczne, mechaniczne i termiczne gleby gliniastej. Wyniki wykazały, że zastosowanie wytrzymałości na ściskanie 2,5 MPa i włączenie włókien palmowych i szklanych w proporcjach od 0% do 0,3% zmniejszyło gęstość nasypową o 0,95% do 7%. Kapilarny współczynnik absorpcji wody wzrósł o 10,61% do 12,63%, podczas gdy wytrzymałość na ściskanie poprawiła się o 11,4% do 34,37%. Ponadto przewodność cieplna spadła o 0,71% do 11,9%. Wyniki te dostarczają cennych informacji na temat właściwości gleb gliniastych i zaobserwowanych ulepszeń. Można stwierdzić, że wzmocnienie gleby za pomocą różnych materiałów i włókien jest wykonalne i przynosi pozytywne rezultaty w zastosowaniach geotechnicznych.
Czasopismo
Rocznik
Tom
Strony
129--149
Opis fizyczny
Bibliogr. 56 poz., fig., tab.
Twórcy
autor
- Laboratory of Development in Mechanics and Materials (LDMM); University of Djelfa
autor
- Civil Engineering Department; University of Djelfa
autor
- Laboratory of Development in Mechanics and Materials (LDMM); University of Djelfa
autor
- Process Engineering Lab Laghouat; University Algeria
autor
- Faculty of Engineering; Djelfa University
autor
- Laboratory of Paleontology, Stratigraphy and Paleo Environments; Faculty of Earth Sciences and Universe; University of Oran
Bibliografia
- [1] Lahbabi S., Bouferra R., Saadi L., Khalil A., “Study of the physicochemical, mineralogical, and geotechnical properties of clayey soils to improve the durability of eco-construction materials in the rural region”, Construction and Building Materials, vol. 411, (2024), 134304. https://doi.org/10.1016/j.conbuildmat.2023.134304
- [2] Tang Q., Sun C., Chen Y., Guo W., Jia R., Gao H., Xu X., “Impact of clay on the decompositional mechanical properties of clayey silt hydrate sediments”, Energy & Fuels, vol. 38(8), (2024), 6834-6843. https://doi.org/10.1021/acs.energyfuels.3c04911
- [3] Estabragh A. R., Jahani A., Javadi A. A., Babalar M., „Assessment of different agents for stabilisation of a clay soil”, International Journal of Pavement Engineering, vol. 23(2), (2022), 160-170. https://doi.org/10.1080/10298436.2020.1736293
- [4] Mishra M., Lourenço P. B., Ramana G. V., “Structural health monitoring of civil engineering structures by using the internet of things: A review”, Journal of Building Engineering, 48, (2022), 103954. https://doi.org/10.1016/j.jobe.2021.103954
- [5] Salih N. B., “Geotechnical characteristics correlations for fine-grained soils”, In IOP Conference Series: Materials Science and Engineering, vol. 737(1), (2020), 012099). https://doi.org/10.1088/1757-899X/737/1/012099
- [6] ElMouchi A., Siddiqua S., Wijewickreme D., Polinder H., “A review to develop new correlations for geotechnical properties of organic soils”, Geotechnical and Geological Engineering, vol. 39, (2021), 3315-3336. https://doi.org/10.1007/s10706-021-01723-0
- [7] Soltani A., Deng A., Taheri A., O'Kelly B. C., “Intermittent swelling and shrinkage of a highly expansive soil treated with polyacrylamide”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 14(1), (2022), 252-261. https://doi.org/10.1016/j.jrmge.2021.04.009
- [8] Louafi B., Hadef B., Bahar R., “Improvement of geotechnical characteristics of clay soils using lime”, Advanced materials research, vol. 1105, (2015), 315-319. https://doi.org/10.4028/www.scientific.net/AMR.1105.315
- [9] Yousefi A., Jahanian H., Azadi M., „Effect of adding cement and nanocement on mechanical properties of clayey soil”, The European Physical Journal Plus, vol. 135(8), (2020), 649. https://doi.org/10.1140/epjp/s13360-020-00639-7
- [10] Estabragh A. R., Bordbar A. T., Javadi A. A., “Mechanical behavior of a clay soil reinforced with nylon fibers”, Geotechnical and Geological Engineering, vol. 29, (2011), 899-908. https://doi.org/10.1007/s10706-011-9427-8
- [11] Bao X., Huang Y., Jin Z., Xiao X., Tang W., Cui H., Chen X., “Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber”, Construction and Building Materials, vol. 280, (2021), 122517. https://doi.org/10.1016/j.conbuildmat.2021.122517
- [12] Butt W. A., Mir B. A., Jha J. N., “Strength behavior of clayey soil reinforced with human hair as a natural fibre”, Geotechnical and Geological Engineering, vol. 34, (2016), 411-417. https://doi.org/10.1007/s10706-015-9953-x
- [13] Gul N., Mir B. A., “Performance evaluation of silty soil reinforced with glass fiber and cement kiln dust for subgrade applications”, Construction and Building Materials, vol. 392, (2023), 131943. https://doi.org/10.1016/j.conbuildmat.2023.131943
- [14] Asadi R., Mirghasemi A. A., „Numerical investigation of particle shape on mechanical behaviour of unsaturated granular soils using elliptical particles”, Advanced Powder Technology, vol. 29(12), (2018), 3087-3099. https://doi.org/10.1016/j.apt.2018.08.018
- [15] Ruiz G., Zhang X., Edris W. F., Cañas I., Garijo L., “A comprehensive study of mechanical properties of compressed earth blocks”, Construction and Building Materials, vol. 176, (2018), 566-572. https://doi.org/10.1016/j.conbuildmat.2018.05.077
- [16] Wachira K. T., Optimization of soil-lime and cement mixes for compressed earth stabilized blocks for low-cost housing in East Africa (Kenya). Doctoral dissertation, University of Missouri-Kansas City.
- [17] Fernandes J., Peixoto M., Mateus R., Gervásio H., “Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks”, Journal of Cleaner Production, vol. 241, (2019), 118286. https://doi.org/10.1016/j.jclepro.2019.118286
- [18] Zidan A. F., “Strength and consolidation characteristics for cement stabilized cohesive soil considering consistency index”, Geotechnical and Geological Engineering, vol. 38(5), (2020), 5341-5353. https://doi.org/10.1007/s10706-020-01367-6
- [19] Hassan W., Farooq K., Mujtaba H., Alshameri B., Shahzad A., Nawaz M. N., Azab M., “Experimental investigation of mechanical behavior of geosynthetics in different soil plasticity indexes”, Transportation Geotechnics, vol. 39, (2023), 100935. https://doi.org/10.1016/j.trgeo.2023.100935
- [20] O’Kelly B. C., “Review of recent developments and understanding of Atterberg limits determinations”, Geotechnics, vol. 1(1), (2021), 59-75. https://doi.org/10.3390/geotechnics1010004
- [21] Cil M. B., Sohn C., Buscarnera G., “DEM modeling of grain size effect in brittle granular soils”, Journal of Engineering Mechanics, vol. 146(3), (2020), 04019138. https://doi.org/10.1061/(ASCE)EM.1943-7889.000171
- [22] Shivaprakash S. H., Sridharan A., “Correlation of compaction characteristics of standard and reduced Proctor tests”, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, vol. 174(2), (2021), 170-180. https://doi.org/10.1680/jgeen.20.00060
- [23] Abbou M., Semcha A., Aoual F. K., “Physico-mechanical characterization and durability of stabilized compressed earth bricks in the region of Timimoun in southwestern Algeria”, Journal of Materials and Engineering Structures «JMES», vol. 8(2), (2021), 287-300.
- [24] Zidan A. F., “Strength and consolidation characteristics for cement stabilized cohesive soil considering consistency index”, Geotechnical and Geological Engineering, vol. 38(5), (2020), 5341-5353. https://doi.org/10.1007/s10706-020-01367-6
- [25] Sinha P., Iyer K. K., “Effect of stabilization on characteristics of subgrade soil: a review”, In: Prashant A., Sachan A., Desai C. (eds) Advances in Computer Methods and Geomechanics. Lecture Notes in Civil Engineering, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-15-0886-8_54
- [26] Safi W., Singh S., “Efficient & effective improvement and stabilization of clay soil with waste materials”, Materials Today: Proceedings, vol. 51, (2022), 947-955. https://doi.org/10.1016/j.matpr.2021.06.333
- [27] Labiad Y., Meddah A., Beddar M., Pantelidis L., “Study on characterization, mechanical, and thermal properties of Alfa fiber–reinforced compressed earth blocks incorporating crushed brick waste”, Arabian Journal of Geosciences, vol. 16(10), (2023), 575. https://doi.org/10.1007/s12517-023-11695-5
- [28] Abdelkader F, Mohamed R, Cheikh K, Rabehi R., “Mechanical properties of compressed earth blocks reinforced with glass fibers and palm fibers: Experiments and simulation”, The Journal of Engineering and Exact Sciences, vol. 9(5), (2023) 15916-01e. https://doi.org/10.18540/jcecvl9iss5pp15916-01e
- [29] Sujatha E. R., Atchaya P., Darshan S., Subhashini S., ‘Mechanical properties of glass fibre reinforced soil and its application as subgrade reinforcement”, Road Materials and Pavement Design, vol. 22, (2021), 2384-2395. https://doi.org/10.1080/14680629.2020.1746387
- [30] Yilmaz Y., “Compaction and strength characteristics of fly ash and fiber amended clayey soil”, Engineering Geology, vol. 188, (2015), 168-177. https://doi.org/10.1016/j.enggeo.2015.01.018
- [31] Yilmaz Y., Kheirjouy A. B., Akgungor A. P., “Investigation of the effect of different saturation methods on the undrained shear strength of a clayey soil compacted with standard and modified proctor energies”, Periodica Polytechnica Civil Engineering, vol. 60(3), (2016), 323-329. https://doi.org/10.3311/PPci.8891
- [32] Hamdan M. H. M., Siregar J. P., Cionita T., Jaafar J., Efriyohadi A., Junid R., Kholil A., “Water absorption behaviour on the mechanical properties of woven hybrid reinforced polyester composites”, The International Journal of Advanced Manufacturing Technology, vol. 104, (2019), 1075-1086. https://doi.org/10.1007/s00170-019-03976-9
- [33] Rubio C. M., “A laboratory procedure to determine the thermal properties of silt loam soils based on ASTM D 5334”, Applied Ecology and Environmental Sciences, vol.1(4), (2013), 45-48.
- [34] Chen X., Liu Y., Finite element modeling and simulation with ANSYS Workbench. CRC press, 2018.
- [35] Mostafa M., Uddin N., “Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces”, Case Studies in Construction Materials, vol. 5, (2016), 53-63. https://doi.org/10.1016/j.cscm.2016.07.001
- [36] Atiki E., Taallah B., Feia S., Almeasar K. S., Guettala A., “Effects of incorporating date palm waste as a thermal insulating material on the physical properties and mechanical behavior of compressed earth block”, Journal of Natural Fibers, vol. 19(14), (2022), 8778-8795. https://doi.org/10.1080/15440478.2021.1967831
- [37] Mohamed A. E. M. K., “Improvement of swelling clay properties using hay fibers”, Construction and Building Materials, vol. 38, (2013), 242-247. https://doi.org/10.1016/j.conbuildmat.2012.08.031
- [38] El Ahmad M., Najjar S., Sadek S., “Drained triaxial response of natural clay reinforced with natural hemp fibers”, International Journal of Geomechanics, vol. 24(7), (2024), 04024123. https://doi.org/10.1061/IJGNAI.GMENG-9190
- [39] Zhang S., He P., Niu L., “Mechanical properties and permeability of fiber-reinforced concrete with recycled aggregate made from waste clay brick”, Journal of Cleaner Production, vol. 268, (2020), 121690. https://doi.org/10.1016/j.jclepro.2020.121690
- [40] Limami H., Manssouri I., Cherkaoui K., Khaldoun A., “Mechanical and physicochemical performances of reinforced unfired clay bricks with recycled Typha-fibers waste as a construction material additive”, Cleaner Engineering and Technology, vol. 2, (2021), 100037. https://doi.org/10.1016/j.clet.2020.100037
- [41] Liu L., Liu J., Xiao Z., „Investigation on soil water retention characteristics and tensile strength of phyllite residual soil reinforced with polypropylene fibers”, Construction and Building Materials, 444, 137544. https://doi.org/10.1016/j.conbuildmat.2024.137544
- [42] Idder A., Hamouine A., Labbaci B., Abdeldjebar R., “The porosity of stabilized earth blocks with the addition plant fibers of the date palm”, Civil Engineering Journal, vol. 6(3), (2020), 478-494. https://doi.org/10.28991/cej-2020-03091485
- [43] Abessolo D., Biwole A. B., Fokwa D., Ganou Koungang B. M., Baah Y. B., “Physical, mechanical and hygroscopic behaviour of compressed earth blocks stabilized with cement and reinforced with bamboo fibres”, International Journal of Engineering Research in Africa, vol. 59, (2022), 29-41. https://doi.org/10.4028/p-spbskv
- [44] Teixeira E. R., Machado G. P., Junior A. D., Guarnier C., Fernandes J., Silva S. M., Mateus R., “Mechanical and thermal performance characterisation of compressed earth blocks”, Energies, vol. 13(11), (2020), 2978. https://doi.org/10.3390/en13112978
- [45] Yazici M. F., Keskin S. N., „Enhancing mechanical properties of low plasticity clay soil using hemp fibers: effects of fiber content and fiber surface coating”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 48(2), (2024), 961-975. https://doi.org/10.1007/s40996-023-01208-5
- [46] Salimi M., Payan M., Hosseinpour I., Arabani M., Ranjbar P. Z., “Effect of glass fiber (GF) on the mechanical properties and freeze-thaw (FT) durability of lime-nanoclay (NC)-stabilized marl clayey soil”, Construction and Building Materials, vol. 416, (2024),135227. https://doi.org/10.1016/j.conbuildmat.2024.135227
- [47] Topçuoğlu Y. A., Gürocak Z., “Increasing strength of clay soils with the use of basalt fiber: an experimental study”, Turkish Journal of Science and Technology, vol. 19(1), (2024), 87-96. https://doi.org/10.55525/tjst.1398354
- [48] Donkor P., Obonyo E., “Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers”, Materials & Design, vol. 83, (2015), 813-819. https://doi.org/10.1016/j.matdes.2015.06.017
- [49] Labiad Y., Meddah A., Beddar M., Pantelidis L., “Study on characterization, mechanical, and thermal properties of Alfa fiber–reinforced compressed earth blocks incorporating crushed brick waste”, Arabian Journal of Geosciences, vol. 16(10), (2023), 575. https://doi.org/10.1007/s12517-023-11695-5
- [50] Madrid R., Mechan V., Asto L., Barboza C., Seclen K., “Influence of fibres on the resilient modulus and expansion of clayey subgrade soils”, International Journal of Pavement Engineering, vol. 25(1), (2024), 2298262. https://doi.org/10.1080/10298436.2023.2298262
- [51] Pushpakumara B. H. J., Hewawaduge T. R., „Effect of banana fibre and lime on mechanical and thermal properties of unburnt clay bricks”, Australian Journal of Civil Engineering, vol. 22(1), (2024), 37-46. https://doi.org/10.1080/14488353.2022.2114639
- [52] Berrehail T., Zemmouri N., Agoudjil B., “Thermal conductivity of cement stabilized earth bricks reinforced with date palm fiber”, In AIP Conference Proceedings, vol. 1968(1), (2018), 030036. https://doi.org/10.1063/1.5039223
- [53] El-yahyaoui A., Manssouri I., Lehleh Y., Sahbi H., Limami H., “Enhancing the mechanical and thermal insulation properties of clay-based construction materials with neutral carbon footprint through the use of Doum fibers”, Materials Chemistry and Physics, vol. 314, (2024), 128774. https://doi.org/10.1016/j.matchemphys.2023.128774
- [54] Khoudja D., Taallah B., Izemmouren O., Aggoun S., Herihiri O., Guettala A., “Mechanical and thermophysical properties of raw earth bricks incorporating date palm waste”, Construction and Building Materials, vol. 270, (2021), 121824. https://doi.org/10.1016/j.conbuildmat.2020.121824
- [55] Ghailane H., Ahamat M. A., Padzi M. M., Beddu S., “Steady-state heat flow through hollow clay bricks”, In IOP Conference Series: Materials Science and Engineering, vol. 834(1), (2020), 012021. https://doi.org/10.1088/1757-899X/834/1/012021
- [56] Doubi H. G., Kouamé A. N., Konan L. K., Tognonvi M., Oyetola S., “Thermal conductivity of compressed earth bricks strengthening by shea butter wastes with cement”, Materials Sciences and Applications, vol. 8(12), (2017), 848. https://doi.org/10.4236/msa.2017.812062
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bad9a56-6e3b-49aa-8c88-6f375669e091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.