PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The analysis of the direct foundation with energy foundations on the basis of the office building “A4 Business Park” in Katowice at Francuska street

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Resources of geothermal energy range from the shallow ground to hot water and hot rock were found a few kilometres beneath the Earth's surface, and down even deeper to the extremely high temperatures of molten rock called magma. The paper shows the analysis of the public building foundation with the usage of shallow geothermal system (closed loop systems using the vertical energy piles). In the soil and groundwater conditions the change of the way of public building foundation was suggested from direct (setting of pads, strip footings and foundation plate according to the basic project) into indirect one with the use of drilled piles in a casing pipe with the possibility of their cooperation with vertical ground collector. Calculations have been conducted in accordance with effectual standards. Both the quantity of energy piles in a single foundation pile coped with the foundation plate and the quantity of energy foundations in the whole building have been determined for the analysed building. Moreover, approximate heating power of the whole system has been calculated. An economical analysis of the proposed solution is presented in a summary.
PL
Źródła energii geotermalnej mieszczą się w strefie od przypowierzchniowych warstw gruntów, poprzez gorące źródła i gorące skały znajdujące się kilka kilometrów pod powierzchnią Ziemi, aż do znacznie głębszych obszarów o ekstremalnie wysokich temperaturach stopionych skał zwanych magmą. W pracy przedstawiono analizę sposobu posadowienia budynku użyteczności publicznej przy wykorzystaniu płytkiej geotermii (zamknięty system instalacyjny w formie pętli wykorzystujący pionowe pale energetyczne). W zadanych warunkach gruntowo-wodnych zaproponowano zmianę sposobu posadowienia z bezpośredniego (układ stóp, ław i płyty fundamentowej wg projektu podstawowego) na pośredni za pomocą pali wierconych w rurze obsadowej z możliwością ich współpracy z pionowymi sondami gruntowymi. Obliczenia przeprowadzono wg obowiązujących norm. Dla analizowanego obiektu określono liczbę pali grzewczych w pojedynczym fundamencie palowym zwieńczonym płytą oczepową oraz liczbę fundamentów grzewczych w całym budynku, a także obliczono przybliżoną moc grzewczą całego układu. W podsumowaniu zaprezentowano analizę ekonomiczną zaproponowanego rozwiązania.
Rocznik
Strony
65--76
Opis fizyczny
Bibliogr. 59 poz.
Twórcy
  • Faculty of Civic Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
  • Faculty of Civic Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Kapuściński J., Rodzoch A.; Geotermia niskotemperaturowa w Polsce i na świecie: stan aktualny i perspektywy rozwoju: uwarunkowania techniczne, środowiskowe i ekonomiczne (Low-temperature geothermics in Poland and in the world: up to date condition and development prospects: technical, environmental and economical conditioning). PhD Thesis written on the Environment Minister order, Publisher: Borgis, Warsaw 2010 (in Polish).
  • [2] Gonet A., Śliwa T., Hendel J.; Magazynowanie w górotworze ciepła pochodzącego z różnych źródeł (Heat storage from various sources in the orogen). AGH Drilling Oil Gas, Vol.29, No.1, 2012; p.135-144 (in Polish).
  • [3] www.pgi.gov.pl: Państwowy Instytut Geologiczny. Informacja geologiczna. Energia geotermalna (National Geological Institute. Geological information. Geothermal energy).
  • [4] Jastrzębska M., Piotrowicz B.; Produkcja energii cieplnej w pompach ciepła z sondą gruntową zamontowaną w fundamentach pośrednich obiektów budowlanych, w szczególności instalacji opartych o odnawialne źródła energii (The production of thermal energy in heat pumps with ground collector mounted in the intermediate foundations of the buildings, in particular the installations based on renewable energy resources). Monograph „Energetics for the construction industry – the insight of the young scientist”, B. Bochentyn, K. Piech (eds.), Kraków: CREATIVETIME, 2015; p.158-166 (in Polish).
  • [5] Ćwirko M., Piotrowicz B.; Analiza systemu OZE i jego posadowienia na terenie Sośniej Góry w Mikołowie (Renewable energy resources system and its foundation analysis on the area of Sośnia Góra in Mikołów). Master’s Thesis under the supervision of M. Jastrzębska, Faculty of Civil Engineering, The Silesian University of Technology, Gliwice 2014 (in Polish).
  • [6] Brandl H.; Energy Foundations and other Thermo- Active Ground Structures. Géotechnique, Vol.56, No.2, 2006; p.81-122.
  • [7] Adam D., Markiewicz R.; Energy from earth-coupled structures, foundations, tunnels and sewers. Geotechnique, Vol.59, No.3, 2009; p.229-236.
  • [8] Frodl S., Franzius J.N., Bartl T.; Design and construction of the tunnel geothermal system in Jenbach. Geomechanics and Tunnelling, Vol.3, No.5, 2010; p.658-668.
  • [9] Oberhauser A.; Verfahrensund Komponentenentwicklung zur Planung von Tunnelthermie – Anglen (Process and component development for planning of tunnel thermics – fishing). PhD Thesis, Vienna University of Technology, 2006 (in German).
  • [10] Brandl H.; Energy piles and diaphragm walls for heat transfer from and intoground. Proc. 3rd Int. Geotech. Seminar, Deep Foundations and Auger Piles III, Ghent, A.A. Balkema, Rotterdam, 1998; p.37-60.
  • [11] Amatya B.L., Soga K., Bourne-Webb P.J., Amis T., Laloui L.; Thermo-mechanical behaviour of energy piles. Geotechnique, Vol.62, No.6, 2012; p.503-519.
  • [12] Laloui L., Nuth M., Vulliet L.; Experimental and numerical investigations of the behaviour of a heat exchanger pile. International Journal for Numerical and Analytical Methods in Geomechanics, No.30, 2006; p.763-781.
  • [13] Pahud D., Hubbuch M.; Measured Thermal Performances of the Energy Pile System of the Dock
  • Midfieldat Zürich Airport. Proc. European Geothermal Congress, Unterhaching, Germany, 30 May-1 June 2007; p.1-7.
  • [14] Knellwolf C., Peron H., Laloui L.; Geotechnical analysis of heat exchanger piles. Journal of Geotechnical and Geoenvironmental Engineering, 2011, doi:10.1061/(ASCE)GT.1943-5606.0000513.
  • [15] Von der Hude N., Kapp C.; The use of heat exchanger piles as exemplified in the Main Tower building in Frankfurt am Main. 5th Darmstadt Geotechnical Conference, 1998, Darmstadt.
  • [16] Fischl M.N., Himmler R.; International Solar Center Berlin – A comprehensive energy design. Building performance congress. Frankfurt Am Main, Germany, Messe Frankfurt GmbH, 2005.
  • [17] Schroder B., Hanschke T.; Energy piles – environmentally friendly heating and cooling with geothermally active prefabricated reinforced concrete piles. Bautechnik, Vol.80, No.12, 2003; p.925-927.
  • [18] Amis T., Bourne-Webb P., Davidson C., Amatya B. and Soga K.; An investigation into the effects of heating and cooling energy piles whilst under working load at Lambeth College, Clapham Common, U.K. Proceedings 11th Int. Conf. Deep Foundations, Deep Foundation Institute, 2008, CD Rom.
  • [19] Bourne-Webb P.J., Amatya B., Soga K., Amis T., Davidson C., Payne P.; Energy Pile Test at Lambeth College, London: Geotechnical and Thermodynamic Aspects of Pile Response to Heat Cycles. Géotechnique, Vol.59, No.3, 2009; p.237-248.
  • [20] Kovacevic M.S., Bacic M., Arapov I.; Possibilities of underground engineering for the use of shallow geothermal Energy. Gradevinar, Vol.64, No.12, 2012; p.1019-1028.
  • [21] Bouazza A., Singh RM., Wang B., Barry-Macaulay D., Haberfield C., Chapman G., Carden Y.; Harnessing on site renewable energy through pile foundations, Australian Geomechanics, Vol.46, No.4, 2011; p.79-90.
  • [22] Lund J.W., Boyd T.L.; Direct Utilization of Geothermal Energy 2015 World wide Review. Proc. World Geothermal Congress, Melbourne, Australia, 2015; p.1-31.
  • [23] Piech K.; Passive buildings and other standards of erecting energy-saving buildings, gaining solar energy, Monograph: Energetics for the construction industry – the insight of the young scientist, B. Bochentyn, K. Piech (eds.), Kraków : CREATIVETIME, 2015; p.35-42 (in Polish).
  • [24] Buratyński G.; Projekt robót geologicznych na wykonanie otworów technologicznych w celu wykorzystania ciepła Ziemi (The project of geological works on building of technological holes for geothermal energy use). GeoJust s.c, Wrocław 2012 (in Polish).
  • [25] Szydełko B., Stępniewska I.; Projekt robot geologicznych na wykonanie odwiertów dla instalacji kolektorów pionowych w celu wykorzystania ciepła Ziemi dla Domu Pomocy Społecznej w Dzbańcach (The project of geological works on boreholes for the installation of vertical collectors for geothermal Energy use in the nursing home in Dzbańce). 1 dz. Nr 11/1. Zakład Usług Geologicznych “Grunt” s.c., Opole 2012 (in Polish).
  • [26] Wita A., Balcerzak A., Mirosław-Świątek D.; Heating system with heating energy ground battery – experiments outcomes, XIV Science Conference – Korbielów 2002 “Computer Methods in Design and Analysis of Hydrotechnical Structures”, 2002; p.229-241.
  • [27] Cholewa T., Guz Ł., Siuta-Olcha A.; Wykorzystanie alternatywnych źródeł energii w instalacjach grzewczo- klimatyzacyjnych (Use of alternative Energy sources in heating and air-conditioning installations). EcOpole’08, Piechowice, 23-25 X 2008, Society of Ecological Chemistry and Engineering, Proc. Of EcOpole, Vol.3, No.1, 2009; p.127-132.
  • [28] www.rynekinstalacyjny.pl.
  • [29] Rychlewski P., Jurasz W., Sierant J.; Fundamenty palowe – jako elementy instalacji pozyskującej
  • energię cieplną z gruntu w instalacjach pomp ciepła – termopale (Pile foundations – as an installation’s elements obtained thermal energy from the ground in installations of heat pumps – thermopile), Inżynier budownictwa, January 2014, No.113; p.88-94 (in Polish).
  • [30] Brandl H.; Geothermal heating and cooling of buildings, Zbornik 4. Šukljetovi dnevi, Portorož, 2003; p.3-27.
  • [31] Brandl H.; Deep Foundations on Bored and Auger Piles. Van Impe and Van Impe, Taylor & Francis Group, London, 2009, ISBN 978-0-415-47556-3; p.77-95.
  • [32] Wang B., Bouazza A., Singh R. M., Barry-Macaulay D., Haberfield C., Chapman G., Baycan S.; Field investigation of a geothermal energy pile: initial observations. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, France, 2013; p.3415-3418.
  • [33] Murphy K.D., McCartney J.S., Henry K.H.; Thermomechanical characterization of full-scale energy foundations. Proceedings of the GeoCongress ASCE, 2014; p.617-628.
  • [34] Rosenberg J.E.; CentrifugeModeling of Soil-Structure Interaction in Thermo-Active Foundations. Master Thesis, University of Colorado, Boulder, 2010.
  • [35] Stewart M.A., McCartney J.S.; Strain Distribution in CentrifugeModel Energy Foundations. GeoCongress 2012, Oakland, CA.; p.4385-4376.
  • [36] Loria A.F.R., Gunawan A., Shi C., Laloui L., Ng C.W.; Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads. Geomechanics for Energy and the Environment, No.1, 2015; p.1-15.
  • [37] Wang B., Bouazza A., Haberfield C.; Preliminary Observations from Laboratory Scale Model Geothermal Pile Subjected to Thermo-Mechanical Loading. Geo-Frontiers 2011, Dallas, TX., 2012; p.430-439.
  • [38] Wang, B., Bouazza, A., Barry-Macaulay D., SinghM.R., Webster M., Haberfield C., Chapman G.; Field and Laboratory Investigation of Heat Exchanger Pile. GeoCongress 2012, Oakland, CA.; p.4396-4400.
  • [39] Kalantidou A., Tang A.M., Pereira J.-M., Hassen G.; Preliminary Study on the Mechanical Behaviour of Heat Exchanger Pile in Physical Model (Technical Note). Géotechnique Vol.62, No.11, 2012; p.1047-1051.
  • [40] Yavari N., Tang A. M., Pereira J. M., Hassen G.; Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling. Acta Geotechnica Vol.9, No.3, 2014; p.385-398.
  • [41] Shin H., Jeon, J., Lee, S.; Numerical Study on Ground Heat Exchange System. Advances in Civil, Environmental and Materials Research (ACEM 14), Busan, South Korea, 2014.
  • [42] Jeong S., Lim H., Lee J. K., Kim J.; Thermally induced mechanical response of energy piles in axially loaded pile groups. Applied Thermal Engineering, Vol.71, No.1, 2014; p.608-615.
  • [43] Batini N., Loria A.F.R., Conti P., Testi D., Grassi W., Laloui, L.; Energy and geotechnical behaviour of energy piles for different design solutions. Applied Thermal Engineering, Vol.86, 2015; p.199-213.
  • [44] Marto A., Amaludin A., Hatta Bin Satar M.; Experiments on Shallow Geothermal Energy model piles embedded in soft soil. Electronic Journal of Geotechnical Engineering, Vol.20, Bund. 25, 2015; p.12687-12698.
  • [45] Bourne-Webb P.J., Amatya B., Soga K.; A framework for understanding energy pile behaviour. Proceedings of the ICE-Geotechnical Engineering, Vol.166, No.2, 2012; p.170-177.
  • [46] Wawrzyńczyk B.; Analiza posadowienia pośredniego za pomocą fundamentów grzewczych budynku biurowego w Katowicach (The analysis of indirect foundation with energy foundations of an Office building in Katowice). Master thesis under the supervision of M. Jastrzębska, Faculty of Civil Engineering, The Silesian University of Technology, Gliwice 2014.
  • [47] PN-EN 1991-1-1:2004/AC Eurokod 1: Oddziaływania na konstrukcje – Część 1-1: Oddziaływania ogólne – Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach (Eurocode 1: Actions on structures – Part 1-1: General actions – Densities, self-weight, imposed loads for buildings).
  • [48] PN-EN 1991-1-3: 2005 Obciążenie śniegiem (Snow load).
  • [49] PN-EN 1991-1-1: 2004 Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach (Densities, self-weight, imposed loads for buildings).
  • [50] PN-EN-1991-1-4: 2005 Obciążenie wiatrem (Wind load).
  • [51] PN-83 B-02482 Fundamenty budowlane. Nośność pali i fundamentów palowych (Building foundations. Piles and piles foundations capacity).
  • [52] PN-B-03264: 2002 Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie (Concrete structures, reinforced and prestressed. Static calculations and designing).
  • [53] Puła O., Rybak C., Sarniak W.; Fundamentowanie. Projektowanie posadowień (Foundation. Foundations designing). Cz. Rybak (ed.), Dolnośląskie Wydawnictwo Edukacyjne, Wrocław 1999 (in Polish).
  • [54] PN-EN-1992-1-1: 2008 Reguły ogólne i reguły dla budynków (General rules and rules for buildings).
  • [55] Puła O.; Fundamenty palowe według Eurokodu 7 (Pile foundations according to Eurocode 7). Dolnośląskie Wydawnictwo Edukacyjne, Wrocław 2013 (in Polish).
  • [56] PN-EN 12831: 2006. Instalacje ogrzewcze w budynkach – Metoda obliczania projektowego obciążenia cieplnego (Heating systems in buildings – the method for calculating the design heat load).
  • [57] www.solis.pl.
  • [58] www.globenergia.pl.
  • [59] Instruction VDI 4640. Thermal use of the underground. Part 1, Issue 2010.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bad3f8d-489f-4105-965c-a604e7d49293
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.