PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Phase reactions during sintering of M3/2 based composites with WC additions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza spiekania kompozytów stal szybkotnąca M3/2 - węglik wolframu WC
Języki publikacji
EN
Abstrakty
EN
Attempts have been made to describe the influence of WC additions on properties of M3/2 high speed steel (HSS) based composites. The powder compositions used to produce skeletons for further infiltration were M3/2, M3/2+10%WC and M3/2+30%WC. The powders were cold pressed at 800 MPa. The green compacts were subsequently sintered for 60 minutes at 1150°C in vacuum. These as-sintered specimens were used for copper infiltration. A qualitative EDX analysis revealed presence of both MC type vanadium-rich carbides and M6 C type tungsten and iron rich carbides. In specimens containing 10 and 30% WC the carbide phase was uniformly distributed within copper-rich regions. The WC monocarbide reacts with the surrounding HSS matrix and forms a carbide grain boundary film. The microstructural observations of the as-sintered specimens was followed by Brinell hardness test and supplemented with dilatometric studies.
PL
Badania miały na celu określenie wpływu dodatku węglika wolframu WC na własności kompozytów na osnowie stali szybkotnącej. Do wytwarzania porowatych kształtek stosowano następujace mieszanki proszków: 100% M3/2, M3/2+10%WC i M3/2+30%WC. Mieszanki proszków prasowano pod ciśnieniem 800MPa. Część wyprasek poddano spiekaniu przez 60 minut w temperaturze 1150°C w próżni lepszej od 10-2. Do infiltracji stosowano wypraski i porowate spieki. Analiza przy użyciu mikrosondy rentgenowskiej potwierdziła obecność dwu typów węglików: MC bogatych w wanad oraz M6 C bogatych w wolfram i żelazo. W kształtkach z dodatkiem 10 i 30% węglika wolframu następuje rozpuszczanie węglika i rekcja z osnową stali szybkotnącej, w wyniku czego powstaje nowy węglik w postaci filmu otaczającego cząstki dodanego węglika wolframu. Dodatkowo przedstawiono wyniki badań twardości, wytrzymałości na zginanie oraz odporności na zużycie ścierne badanych kompozytów.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Metal Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] G. Greetham, Development and performance on infiltrated and non-infiltrated valve seat insert materials and their performance. Powder Metallurgy 3, 2, 112-114 (1990).
  • [2] R. H. Plama, Tempering response of copper alloy-infiltrated T15 high-speed steel, The International Journal of Powder Metallurgy 37, 5, 29-35 (2001).
  • [3] C. S. Wright, The production and application of PM high-speed steels. Powder Metallurgy 3, 937-944 (1994).
  • [4] J. M. Torralba, G. Cambronero, J. M. Ruiz-Pietro, M. M das Neves, Sinterability study of PM M2 and T15 HSS reinforced with tungsten and titanium carbides 36, 55-66 (1993).
  • [5] M. Madej, J. Leżański, Copper infiltrated high speed steel based composites, Archives of Metallurgy and Materials 50, 4, 871-877 (2005).
  • [6] M. Madej, J. Leżański, The structure and properties of copper infiltrated HSS based, Archives of Metallurgy and Materials 53, 3, 839-845 (2008).
  • [7] K. Żaba, The influence of temperature and time of exhibition onachange of Al-Si coating thickness and surface texture on the steel plates, Archives of Metallurgy and Materials 55 (1), 151-162 (2010).
  • [8] B. Leszczyńska-Madej, The effect of sintering temperature on microstructure and properties of Al - Si Ccomposites Archives of Metallurgy and Materials 58, 1 (2013).
  • [9] A. Głowacz, Z. Głowacz, Diagnostics of dc machine based on analysis of acoustic signals with application of mfcc and classifier based on words, Archives of Metallurgy and Materials 57(1), 179-183 (2012).
  • [10] Farid Akhtar, Microstructure evolution and wear properties of in situ synthesized Ti B2 and Ti Creinforced steel matrix composites, Journal of Alloys and Compounds 459, 491-497 (2008).
  • [11] G. Hoyle, High Speed Steels. Butterworth & Co. Publishers. Cambridge 1998.
  • [12] S. Wei, J. Zhu, L. Xu, Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel, Tribology International 39, 641-648 (2006).
  • [13] Z. Zalisz, A. Watts, S. C. Mitchell, A. S. Wronski, Friction and wear of lubricated M3 Class 2 sintered high speed steelwith and without Ti Cand Mn Sadditives, Wear 258, 701-711 (2005).
  • [14] W. C. Zapata, C. E. Da Costa, J. M. Torralba, Wear and thermal behaviour of M2 high-speed steel reinforced with Nb Ccomposite, Journal of Materials science 33, 3219-3225 (1998).
  • [15] G. A. Baglyuk, L. A. Poznyak, The sintering of powder metallurgy high-speed steel with activating additions, Powder Metallurgy and Metal Ceramics 41, 7-8, 366-368 (2002).
  • [16] W. Khraisat, L. Nyborg, P. Sotkovszki, Effect of silicon, vanadium and nickel on microstructure of liquid phase sintered M3/2 grade high speed steel, Powder Metallurgy 48, 1, 33-38 (2005).
  • [17] J. A. Jiménez, M. Carsı, G. Frommeyer, O. A. Ruano, Microstructural and mechanical characterisation of composite materials consisting of M3/2 high speed steel reinforced with niobium carbides, Powder Metallurgy 48, 4, 371-376 (2005).
  • [18] J. D. Bolton, A. J. Gant, Phase reactions and chemical stability of ceramic carbide and solid lubricant particulate additions within sintered high speed steel matrix, Powder Metallurgy 36, 4, 267-274 (1993).
  • [19] J. D. Bolton, A. J. Gant, Heat treatment response of sintered M3/2 high speed steel composites containing additions of manganese sulphide, niobium carbide, and titanium carbide, Powder Metallurgy 39, 1, 27-34 (1996).
  • [20] M. Madej, Copper infiltrated high speed steel based composites with iron additions, Archives of Metallurgy and Materials 54, 4, 1083-1091 (2009).
  • [21] M. Madej, The tribological properties of high speed steel based composites, Archives of Metallurgy and Materials 55, 1, 61-68 (2010).
  • [22] H. G. Rutz, F. G. Hanejko, High density processing of high performance ferrous materials, international conference & Exhibition on powder Metallurgy & Particulate Materials, May 8-11, 1994 - Toronto, Canada.
  • [23] M. M. Oliveira, High-speed steels and high-speed steels based composites. International Journal of Materials and Product Technology 15, 3-5, 231-251 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bac733f-7466-41f4-a219-45b94089c78c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.