
Code comprehension as a distributed
construction of meanings

PIOTR COFTA

UTP University of Science and Technology, Faculty of Telecommunications,
Computer Science and Electrical Engineering, 7 S. Kaliskiego Str.,

85-796 Bydgoszcz, Poland, piotr.cofta@utp.edu.pl

Abstract: Code comprehension, a sub-domain of reverse engineering and software maintenance,
does not provide useful explanation of common situations where developers, distributed and isolated
from each other in time and space, come to a similar understanding of a code. This limits our ability
to develop tools to support this popular aspect of code comprehension. This paper investigates this
phenomenon from the perspective of sociology, intentionally distancing itself from the dominating
psychological approach. The analysis, conducted mostly from the standpoint of social systems theory,
highlights that as the construction of meanings is subjective, in the absence of any significant interac-
tions, the dominant influence on the construction of meanings comes from current states of various
social systems to which the developer belongs to. Thus, the similarity of meanings (hence a better
comprehension of the code) can be achieved by understanding systems to which the developer belongs
to and by coordinating their states.
Keywords: computer science, code comprehension, social systems theory, reverse engineering,
software maintenance
DOI: 10.5604/01.3001.0013.3001

1. Introduction

It seems that research in code comprehension does not provide an insight on its
key phenomenon: how is it possible that two people, at different time points and at
different geography, come to the reasonably similar conclusion about the meaning
of the piece of code? This paper intends to investigate this question from the per-
spective of sociology, thus distancing itself from the prevalent psychological view

Biuletyn WAt
Vol. lXViii, nr 2, 2019

24 P. Cofta

on code comprehension. The outcome should inform the development of tools and
methods used in code comprehension.

The paper attempts to shift the focus of code comprehension from psychology
towards sociology, more exactly to social psychology and psycho-sociology. Unfor-
tunately, the author was unable to identify any research from either domain that
directly address the question of code comprehension. While this problem can be
approached from either side, this paper focuses on introducing some social aspects
to the process that is otherwise considered rooted in psychology.

There is a discrepancy between the number and the focus of psychology-orien-
ted and sociology-oriented papers when it comes to software reverse engineering.
Psychology is more prevalent, with Google Scholar (accessed 23/12/2017) reporting
13,700 references to psychology, versus 5,300 to sociology. Further, even the cursory
analysis show that while psychological theories often form the foundation of those
research, sociological theories are often used only to scope the problem.

It is possibly because as much as software engineering visibly became a social
activity, reverse engineering is still considered an individual endeavour, best served
by psychology. There is is a visible trend of collaboration in software engineering
(but not in reverse engineering), with the wealth of research, tools and methods to
support it, such as agile development or open source movement, but this trend did
not found its way into the reverse engineering.

It is also possible that the obstacle is in the absence of the accepted theory
of cooperation that can be applied to reverse engineering in the same way that
theories of a collaborative work are applicable to software engineering. This also
applies to code comprehension, being the discipline that is often considered a sub-
-set of reverse engineering [24]. This paper attempts to address this discrepancy.

The primary objective of this paper is to present the theory that can be used to
construct a sociological approach to software reverse engineering, and specifically
to code comprehension. That is the paper proposes the re-use of a particular social
theory that can explain its perceived convergence of meanings, i.e. how it is that
developers and maintainers, often separated in time and in space, come to the similar
interpretation (and re-interpretation) of the code.

The proposition brought by the theory is that the meaning of the code is inhe-
rently subjective and it is constructed by each developer or maintainer separately,
according to the state of all social systems they are members of. In the absence
of any forms of actual interaction, the code can be comprehended well only if there
is a similarity of states of those systems.

Casually, the quality of code comprehension is contingent on what can be called
shared background and the similarity of experience of developers, neither of which
is currently captured into knowledge databases or repositories.

25Code comprehension as a distributed construction of meanings

2. Motivating cases

Code comprehension, while usually associated with reverse engineering and
code maintenance, is a routine element of several software development activities.
Following three cases are taken from author’s experience with various development
teams.

All those cases illustrate the question of how it is that the meaning of the code,
comprehended by developers, is not fixed, is subjective, yet can be reconciled to
some extent at another point in time and by another developer.
1. A developer wrote a code, and had it accepted (so at least it was a code that

satisfied corporate standards). After few months, the developer looked at his
own code again and honestly stated that he does not understand what it does.

 This — rather popular — case demonstrates that the comprehension of one’s
own code is not fixed in time. As memories of the process of writing the code
deteriorate, so is the ability to comprehend it outright.

2. A developer wrote a piece of code in a rather haphazard style, not caring (and
not knowing) much about any design patterns. Another developer looked at
the same piece of code and immediately identified several design patterns that
— to her — were apparent in the code.

 Here, the second developer discovers meanings that were not deliberately
intended to be present in the code. It is not certain whether the first developer
was a careless genius or whether the second one was trained to see patterns
everywhere, but it is apparent that that meaning that the first developer intended
to include in the code differs from what the second developer discovered.

3. The programming language used by the team introduced a raft of new, attractive
features. Developers quickly embraced the new style that those features availed, but
maintainers were reluctant. Eventually, maintainers could not easily comprehend
newer pieces of the code. The tension was resolved by upskilling maintainers.

 This case demonstrates how the discontinuity in learning can have a negative
impact on maintainers’ ability to comprehend the code, affecting a relatively
harmonious cooperation of both group. It also demonstrates that the correct
solution is in assuring that both groups have a similar educational background.

3. Literature review

This literature review focuses on highlighting research that touched on social
components of code comprehension, such as the use of domain knowledge, edu-
cational background, cooperation etc. The selection used Web of Science as a main
search tool, using keywords such as “code comprehension” and “social”.

26 P. Cofta

Code comprehension is an important activity for developers and maintainers.
During maintenance works they can spend 50% of their time and budget compre-
hending other’s code [2], working mostly alone [9].

The exact definition of what constitute code (program, software) comprehen-
sion varies. Deimel and Naveda [7] define program comprehension as “the process
of taking computer source code and understanding it”. Rugaber [28] defines it
as “the process of acquiring knowledge about a computer program” while Muller et
al. [23] say that it is “the task of building mental models of the underlying software
at various abstraction levels, ranging from models of the code itself, to models
of the underlying application domain, for maintenance, evolution, and reengine-
ering purposes”. The latter definition, as well as the review provided by Brooks [3],
indicates that software professional will use the domain knowledge in the process.

The popular model of the code comprehension is provided by Letovsky [17].
The model stipulates that the ‘assimilation’ (i.e. comprehension) process of an indi-
vidual that directs the mental model is driven by the available knowledge base and
the external representation (the code). This model provides a clear link towards
social sciences, as the knowledge base of an individual can potentially encompass
all the experience (that comes from social activities) of such an individual.

Flor and Hutchins [10] focus on distributed cognition — the situation where
developers jointly discover and comprehend the code, mostly through pair program-
ming. The authors notice that this situation shifts the research from unobservable
mental states to observable communication events, making them closer to the field
of social sciences. A series of experiments demonstrates that distributed cognition
has properties significantly different from the individual one.

Sim [31] provides a useful overview with a distinction between psychological
and sociological studies of code comprehension, highlighting the philosophical diffe-
rence between them. Sociological approach study people in a context of a group with
research focusing on work practices and task performance. The overview provides
an impression that the sociological approach is less mature than psychological studies.

Storey [33] lists several theories and tools that are applicable to code comprehen-
sion. However, almost all of them support individual comprehension, not a group
one. Exceptions are for some general-purpose collaborative tools that can be also used
for group comprehension, not the ones that are specific to group comprehension.

Ducasse et al. [8] propose an extensible re-engineering environment for tool
integration with meta-model capabilities. The integration is achieved by introdu-
cing specific language-independent meta-model, that is based on versioned and
annotated entities. The expectation is that such a tool will be able to convey the way
the meaning has been constructed from one developer to another.

Meng et al. [21] consolidate variety of code comprehension tools using formal
ontology-based models (meta-models) with a view to automate the process of inte-
gration and reasoning. While the approach focuses on supporting an individual

27Code comprehension as a distributed construction of meanings

maintainer, there is a potential to use it to leverage knowledge acquisition and
transfer within the group.

Damasevicius [6] stresses socio-technical nature of software development
and indicates that design artefacts as well as relationships between them must be
internalized by the team to become operational as mental models. Similarly, code
comprehension should be considered a socio-technical activity.

Hamilton and Danicic [14] analyse dependence communities in large-scale
code demonstrating that those communities decompose themselves into smaller
ones along functional domains of the code, thus leading to sematic separation. It
concludes that reverse engineering should be therefore best assigned to the group
that is already familiar with the domain, not to a random maintainer.

Carneiro and Mendonca [4] discuss collaborative code comprehension, using
the specific awareness model and they demonstrate that the collaborative environ-
ment to certain extent improves the ability to detect smells (i.e. deviations from
good coding practices), despite collaborating groups being small.

Pereira dos Santos et al. [27], while discussing the use of social networks to
support software development, indicate the importance of support for the mainte-
nance phase, mostly in the form of better communication and collaboration tools.

Lungu et al. [19] stress the evolutionary and collaborative nature of code
comprehension (focusing on architecture recovery). The process can be supported
with the proposed tool that allows sharing and discovering the results of previous
analysis sessions through a global repository of architectural views that allows for
diverse views thus becoming an advisory tool for developers.

OMG [26] standardised a Knowledge Discovery Meta-model to represent existing
software to offer interoperability and exchange of data between tools produced by
different vendors, to retain, disseminate, and stabilise the knowledge.

4. Code comprehension and social activity

It has been already acknowledged that the social aspect of code comprehension
is not prominently visible in research. It is not surprising, as code comprehension
does not have typical characteristics of a social activity. As both the construction
of meanings as well as the stabilisation of once constructed meanings require
interaction [18], the properties of code comprehension listed below do not need
themselves easily to support the construction of stable meanings.
•	 Solitary	activity.	Code	comprehension	is	usually	a	solitary	activity.	Apart	

from occasional pair programming and collaborative code comprehension,
the dominant industry practice is that code comprehension is a solitary activity
of an individual who constructs the meaning of the code off the screen.

28 P. Cofta

•	 Lack	of	feedback.	Another	feature	of	code	comprehension	is	that	the	flow	
of information is only from developers to maintainers who want to comprehend
the code, often with a significant time gap, often accentuated by the fact that
original developers are no longer available. Thus, if there is any communica-
tion, it is devoid of any feedback: the maintainer neither can ask the original
developer for a clarification nor he can engage in any meaningful discussion.

•	 Stored	knowledge.	The	most	efficient	way	 to	communicate	 the	meaning	
of the code is through direct human interaction. However, those communication
means are usually inaccessible to maintainers who must rely on stored infor-
mation such as code and its metadata. This is because activities related to code
comprehension are intermittent, with outbursts of activities separated in time.
While stored information has some advantages when it comes to the retention
of	knowledge,	it	is	seldom	sufficient	to	reconstruct	the	original	line	of	thoughts.

•	 Locality.	The	experience	in	comprehending	one	piece	of	code	cannot	be	encap-
sulated into shared knowledge, the way readily available libraries encapsulate
the developer’s knowledge. Thus, neither the skill of code comprehension nor
the comprehension alone scales up well.

•	 Imperfections.	Code	comprehension	comes	to	play	quite	often	when	the	code	
is not entirely correct, possibly often exactly because it is not correct. Conse-
quently, code comprehension faces not a simple question ‘what did the authors
actually said’, but a more convoluted one: ‘what did the authors intended to say
despite errors’.

5. The meaning of the code

Code comprehension deals with the construction of the meaning of the code,
as referenced (usually in the passing, as a matter-of-fact) by several authors e.g. [25],
[16], [35]. The view represented there is that, while software development deals with
expressing business meanings in a form of a code, code comprehension is a reverse
process of synthesising those meanings from the code. Both processes may have
several stages, where code comprehension may e.g. establish meanings in a domain
of software design, then architecture and only then in a domain of business logic.

Either way, code comprehension deals with meanings. ‘Meaning’ has itself
several meanings, and this section serves as a clarification. Drawing from a tradi-
tion of semiotics [29], the ‘meaning’ of the code is what the code represents that is
not in the representation itself, thus distinguishing between a sign (the code) and
a signifier (the meaning). Within the scope of software reengineering, there is a clear
distinction between activities that require only the cursory understanding the textual
form of a code (such as re-formatting) and actions that require an understanding
that goes beyond the code [36].

29Code comprehension as a distributed construction of meanings

In the sociology, there are at least three approaches to the concept of ‘meaning’.
All of them can be also applied to code comprehension, as discussed throughout this
section. These are: behavioural approach (that claims there is no meaning other than
the one defined by the ‘downstream’ execution, reflecting the construct of semantics),
hermeneutics approach (that claims that the only meaning resides ‘upstream’ with
an original contributor) and communicative (that claims that meanings are subjec-
tive to contributors and that such subjective meanings may or may not converge).

5.1. Semantics − the behavioural approach

The behavioural approach states that there is no specific meaning attributa-
ble to the code other than the meaning defined by its execution. Thus, the code
‘means’ what the code ‘does’, as defined in terms of the platform that executes it.
Hence, the meaning of any piece of the code is always fully explainable by the way
it is executed. This is the approach adopted by the semantical analysis of software.

The name ‘behavioural’ used here is taken as an analogy to the behavioural
approach (e.g. [32]), where the human being is denied any unexplainable mental
life other than trained response to stimuli. In a similar manner, the code does not
represent anything else but only its own functionality, as expressed by its execution.

When applied to code maintenance, this behavioural approach focuses on the abi-
lity to use and alter the code to fit the current purpose, without consideration whether
such a purpose is compatible with the intended meaning of the code (as it assumes
that the intended meaning of the code either does not exist or is irrelevant).

This approach lends itself to the analysis of the code ‘as is’, in a manner that
benefits the hacking community (in both meanings of this word: those who want
to attack the code and those who want to haphazardly make use of it). To certain
extent, it also benefits those who e.g. would like to use the code without engaging
into any deeper understanding, e.g. when they use the (potentially) unpublished
API to achieve their objectives.

This is the area that can be heavily instrumented, but not easily abstracted. That
is, there can be a variety of instruments that allow developers to experiment with
the code and probe its execution such as debuggers, emulators, virtual environments,
test cases etc. However, this approach is less likely to instrument means to abstract
the code into higher level abstractions, as it presupposes that such abstractions do
not exist.

The limitation of such an approach can be found e.g. in the combination
of the reuse of the evolving code, the situation reasonably popular across the industry.
Had the code been immutable, the pragmatic mastery of the code could have been
sufficient	and	the	code	could	have	been	reused	as	the	developer	pleases.	However,	
without understanding what the meaning of the code is, it is easy to lose the ability
to use such a code when it evolves.

30 P. Cofta

Let’s consider an example where there is an existing piece of code ‘X’ that exe-
cutes the merge sorting algorithm, developed for some particular reasons. Such
an algorithm is known to be stable and this is exactly what developer of the new
piece of code ‘Y’ might be looking for. Therefore, the developer includes the call,
and a dependency, from ‘Y’ to ‘X’.

For as long as the ‘X’ remains unchanged, this situation benefits the developer.
However, when the ‘X’ evolved, the new version may contain the sorting algorithm,
but this time it could be the heapsort, which is the unstable one. After all, this may
better satisfy ‘X’ and ‘X’ does not have any obligations to consider ’Y’. As the result,
‘Y’ is broken.

The fallacy of developers of ‘Y’ was to treat the code of ‘X’ ‘as is’, without
understanding the meaning attributed to such a code by original developers of ‘X’.
Had they understood that ‘X’ requires any way of sorting, not this particular one,
the problem would have not appeared.

5.2. Hermeneutics

Hermeneutics assumes that the original developer (the author) of the code had
specific meaning of the code in mind (hence the code has some meaning attributed
by the author). Therefore, to comprehend the code, it is necessary to understand
(discover, reconstruct) this original meaning. The reader (the maintainer) must
make all the reasonable effort to see the code the way the developer did.

Contrasting with the behavioural approach that bases on ‘downstream’ behaviour
of the code, this one traces the ‘upstream’ behaviour — towards developers, design
and business requirements. For example, certain control structures may reveal
design paters used by the author, names of variable may provide clues regarding
the expected function of those variables etc.

This approach lends itself to the study of a code to extract the meaning as it
has been presented by the author. The field of semantics and semiotics, driven by
hermeneutics (e.g. [11]) devoted an extensive amount of work into better under-
standing this approach, even though focusing on literary writings, not on software.

When it comes to code comprehension, the assumption of the existence
of the meaning that can be extracted from the code is a salient feature of several
threads of research. The subject of extracting original meaning from the text is
extensively studied, both for the literary text and for the code, mostly from the psy-
chological perspective. For example, characteristic elements of the code (known
as ‘beacons’ or ‘chunks’ — see e.g. [20]) are often used by maintainers to guess
the structure and the understanding of the code at the higher layer of abstraction.

It is interesting that incidentally such research and tools may attribute meanings
where the meaning is not due. For example, had the author wrote the original code
without any specific pattern, design or requirements in mind (say, quickly ‘hacked’

31Code comprehension as a distributed construction of meanings

it), the analysis of this code may still reveal some higher-level meaning that were
not the intention of the author — as indicated by the second use case in this paper.

Hermeneutics approach would have rectified the situation described earlier
in relation to the sorting algorithm: the developer of ‘Y’ would not rely on the code
of ‘X’ without understanding what the authors of the ‘X’ wanted to achieve. Thus,
the developer of ‘Y’ would be aware that the requirement of stability was not a con-
cern of the original author, so that the call and the dependency should not be made.

However, it will fail to address what is the everyday experience in software
development: that the code has many authors and contributors, possibly separated
in time and space. Even if there was an original meaning attributed by the original
author, this meaning evolved, possibly beyond recognition. In order to rectify such
a problem, the communicative approach is needed.

5.3. Communicative approach

This paper focuses on the third approach: that the code has the plurality of its
‘upstream’ (more abstract) meanings. Specific meaning is subjective to the developer
or maintainer, but those meanings may be reasonably similar [18], provided that
there are favourable conditions for it to happen. This approach is in accord with
various definitions and models of code comprehension presented in the literature
review, in that they also indicate the possibility that different individuals may come
to different comprehension.

The key point in the communicative approach is that despite such subjectivity
it	is	possible	to	comprehend	the	code	in	a	way	that	is	sufficiently	similar,	thus	ena-
bling and facilitating maintenance works. This can happen without the need for
an abstract ‘true’ meaning or for any forms of inter-subjectivity.

Thus, the key question, discussed in this paper, seems to be about conditions
to make them similar, and the design of processes that support those conditions.
The building blocks of this approach are: social systems, psychic systems (individuals),
the construction of meanings and the special form of social systems − interactions.
Those are discussed in more details in the next section.

6. The construction of meanings

The concept that the meaning of the code is maintained by the interaction
represents the main proposition of this paper is the key proposition of this paper.
This section will serve as a brief introduction to the social system theory (see Luh-
mann [18]), with focus on the creation of meanings and the role of interactions.

Note that the social systems theory, as its name suggests, does not deal with
individuals, but with systems to which those individuals contribute. This may be

32 P. Cofta

in contrast with everyday observations that the code comprehension is done by
individuals. Still, the theory provides a vantage point that can be of value. The pro-
position, presented later in this paper, demonstrates how it can be applied to the case
of individuals comprehending the code.

As Luhmann wrote in German, the term that he originally used for meaning
is ‘Sinn’. It is translated either as ‘meaning’ [18] or as ‘sense’ [22]. This paper uses
the first interpretation, ‘meaning’, but in some places, refers to the second interpre-
tation, ‘sense’, specifically when it refers to the system’s activity of ‘making sense’.

6.1. Introduction to social systems theory

This section provides a brief introduction to relevant elements of the social
systems theory, using, whenever possible, references to the process of code com-
prehension. Out of necessity, it is both heavily abbreviated and simplified. For
an authoritative reference see [18] and for an abbreviated version see e.g. [5].

The social systems theory is concerned with structures of autopoietic social
systems, where each social system is a collection of communications between people.
Even though people are not elements of those systems, systems require people
to evolve. That is, the social system can be thought of as a structured, responsive
collection of all relevant communications for as long as people who contribute to
the system have ways to exchange those communications.

Note that people are not parts of social systems. People are however, ‘irritated’
by social systems (by new communications) and in response they ‘irritate’ social
systems by adding communications.

The atomic component of a social system is the communication that is an inse-
parable fusion of information, as defined in [30], utterance (an external form
of the communication) and understanding. The understanding is a distinction
between the information and the utterance that defines the way the system responds
to the communication with communications.

Code comprehension is an activity that apparently happens within the context
of social systems, such as corporations, groups of people etc., but it also happens
as an activity that seems to be solitary. However, no person stays outside all social
systems, even though such person may not be even aware of them. While the fact
of being a part of the software development team or of an organisation can be
apparent, being an alumni of a particular college, a supporter of open software or
an enthusiast of reactive programming also make a person part of various systems
in a more obscure way.

33Code comprehension as a distributed construction of meanings

6.2. Meaning

The ‘meaning’ is the way the system makes a selection how to respond to com-
munications. In other words, the response of the system depends on the meaning
that the system holds about the incoming communication. That is true for social
systems, but it is also true for people who participate in those systems. The meaning
that the system holds is the meaning that the person uses.

If one would like to describe the system in an algorithmic way, the closest
reference would be the state-transition machine where the meaning represents
the internal state of the system, and such a state decides how the system responds
to the stimuli, while possibly changing the state at the same time. Eventually,
the meaning becomes a successor of all previous communications and all previous
meanings that the system held.

Individuals, in the process of contributing to the system, may construct their
own meanings in a similar way, but those meanings are unobservable to the outside
world, and always subjective. Individuals provisionally inherit the meaning from
the system they belong to, reconstruct the meaning on behalf of the system and com-
municate the reconstruction back to the system to be incorporated into the system.

The existence of meanings is warranted by the complexity of the situation.
The system must respond to every new communication in a reasonably timely
manner, or it risks its own disintegration. Had the system been forced to consider
all possible combinations of past communications only to find the way to respond
to the current one, the sizeable system would have never been able to communicate
at all. It is only because the system is selective in reactions by applying the synthesis
of the existing communications, the response happens at all.

The meaning is not a point state, but rather a probability distribution across
various states. Subsequent communications must always ‘make sense’, i.e. their
understanding must always somehow refer to the existing meaning, even if by con-
tradicting it. However, some of those communications may be closer to the centre
of a meaning (i.e. make ‘more sense’) while others may be at the periphery of it.

There is no source of meaning external to the system − that is the meaning
is always ‘subjective’ to the system. The meaning is no more than the convenient
synthesis of all the communications that constitute the system. The meaning evo-
lves as the system evolves, and every new communication alters the ‘probability
distribution’ of the meaning that the system carries.

When it comes to code comprehension, the meaning that the developer attributes
to the code is a consequence of meanings that are held by systems the developer
belongs to. It is not only that “for a man with a hammer everything looks like a nail”,
but also that e.g. a person skilled in databases will see the existing code in a way that
may be dissimilar to the view held by a person skilled in objective programming.
They are, after all, shaped by systems they belong to.

34 P. Cofta

6.3. Interactions

An interaction as a social system should not be confused with interaction
as social activity, where communications are rapidly exchanged between parties.
Interaction, as referred to throughout this paper, is a social system (so it consists
of its own communications). Its specific purpose is to stabilise the meaning, and
the interaction tend to have only one meaning to take care of. That is, the meaning
(the sense) of an interaction is to stabilise the meaning that the interaction carry.
The interaction is not concerned with the meaning as such (there is no preferred
meaning), but rather with the cohesion of such meaning.

The interaction requires a very specific condition: a presence of psychic systems
(people) who take active part in interaction. That is, while the social system is con-
structed outside of individuals, it still requires the active presence of individuals to
stabilise the meaning — in essence to keep the social system working.

Again, risking over-simplification, if there is a meaning worth taking care of, there
is an associated interaction that clarifies what the meaning is. Such a clarification
keeps the ‘probability distribution’ reasonably compact by continuously exploring
and challenging understandings that contribute to the meaning.

Code comprehension is not the activity rich in interactions between defined indivi-
duals. As already discussed, active presence of an author and a maintainer is not a popular
way of working. However, systems that they belong to tend to exist much longer even
though the interaction is possibly conducted by different individuals. Thus, it is possible
that the carrier of the meaning of a code is not an individual but a system − or systems.

7. The proposition

The key question that this paper investigates is a simple one: how does it come
that individuals, separate in time and space, come to reasonably similar conclusion
about a meaning of a piece of code? And what can we do to improve their chances
of those meanings to be similar enough to support the maintenance of the code?

The proposition is simple: it is because they are not acting as individuals, but
as participants in social systems that shaped the way they look at the code and that
will retain the meaning that they attributed to the code. In other words, it is the group
of systems that maintains the meaning of the code, not an individual.

The following mode of social aspects of the code comprehension is proposed.
•	 Social	systems	retain	meanings	of	how	to	interpret	the	code,	i.e.	how	to	attri-

bute meanings to the code. As systems evolve, those meanings also evolves.
•	 Maintainer	who	attempts	to	comprehend	the	code	is	a	member	of	several	

social systems, so the maintainer inherits from those systems several ways
of interpreting the code. However, the maintainer may not use the most

35Code comprehension as a distributed construction of meanings

recent versions of those meanings, depending on the intensity of his inte-
ractions within those systems.

•	 Once	the	code	is	comprehended,	the	outcome	of	such	comprehension	beco-
mes the part of systems the maintainer belongs to. The speed and intensity
of this process depends on the intensity of interactions the maintainer has
within the system.

This paper particularly proposes to focus research on code comprehension
on what happens before an individual encounters a code. That is, instead of posi-
ting the question of how the individual in a given settings approaches the process
of comprehension (in a way characteristic to psychological sciences), it suggests to
focus on how the individual has been formed by social systems up to this point −
what meanings those systems imposed upon him.

7.1. An illustration

The model that emerges can be graphically represented as having several parallel
lines, each representing changes in time to a meaning that the individual constructs
from communications that he is engaged with. That is, it represents the develop-
ment of a psychic system of an individual. Once the individual encounters a code,
the meaning of the code is constructed depending on the current state.

Let’s consider an example provided on Fig. 1. There are three persons there:
the developer, internal maintainer, and external maintainer. The first two share
the membership of the organisation system B, the latter one works for the organisa-
tion system C. Still, they share the common professional background of the function
system A.

Fig. 1. An illustration of the example

36 P. Cofta

The developer’s last encounter with A has been some time ago, but he interacts
within B quite often. As he encounters the code, his comprehension of the code
is driven by some older meanings inherited from A and newer inherited from B.
The meaning of the code, as discovered by him, is fed back into B (e.g. through
local interactions), almost immediately, but it is fed to A only after a long time (e.g.
at the conference).

When the internal maintainer experiences the code, his starting point is dif-
ferent. Meanings inherited from A are even older than in the case of a developer,
but meanings inherited from B are not only fresh, but also already incorporate
contributions from the developer. In a way he is in a privileged situation, assuming
that B took care to protect the meaning generated by the developer through some
forms of internal interaction (e.g. training). Even if B may not be able to interact
directly with the developer, the influence may be strong enough for the internal
maintainer to comprehend the code in a way that is very similar to the interpreta-
tion of a developer.

The external maintainer is in a relatively worse position, as he can rely only
on the impact the developer made on A. certainly he is also affected by C, but C does
not contain any meaning that can directly support the comprehension of the code.
As the external maintainer encounters the same piece of code, his comprehension
may be dissimilar and may lead to confusions. Further, as his comprehension will
be fed back to C, any future encounter of the code by anyone from C may be influ-
enced by his initial comprehension.

7.2. Observations

The naive interpretation of this model may lead to the conclusion that the iden-
tity of communications experienced by the individual before the exercise in code
comprehension guarantees the identity of the meaning of the code. That is, if two
individuals are subject to exactly the same stream of prior communications, they
should attribute the same meaning to the code.

Luhmann [18] leaves no doubt that this is not the case, for at least three reasons.
First, the individual acts for the benefit of the system, which means that the meaning
of the code is contingent on the state of the system, not on the state of the individual.

Second, double contingency introduces instability that accounts for a quasi-ran-
domness in the construction of meanings, so that even identical communications
may lead to different reactions from individuals, thus diverging the paths that lead
to the identity of meanings. It is only the interaction that maintains the similarity.

Finally, second-order observations means that the system can generate
the meaning by self-analysing what it is already constructed of (i.e. past commu-
nications). Therefore, even without the inflow of communications, the system can
alter its state in time.

37Code comprehension as a distributed construction of meanings

Luhmann leaves also no doubt that there is no separate inter-subjectivity [13],
as there is no separate place where it can exist and there is no separate system to
maintain it. Systems can coordinate meanings only through interactions. However,
as the construction of the meaning happens in time, divergence is neither imme-
diate nor irreconcilable. If two individuals are left for too long to their own devices,
the meanings will diverge. But if they reconciled the meaning quite recently, then
for some time it will become similar.

This paper consequently proposes that in order to further code comprehension,
we should consider what happened before an individual encountered the code,
in relation to other individuals who encountered the same code as well as in relation
to previous encounters within the same systems.

Specifically, we should consider forms of interaction that happen within the scope
of systems, even if such interactions are not apparently related to the code. While
the interaction always require presence, it does not mean that developers and
maintainers have to meet in person. They can be engaged in some larger forms
of interactions that do enough to stabilise meanings.

The paper expects that the similarity in the meaning of the code (that is,
a successful code comprehension) is the outcome of a variety of social activities
that shape systems as well as the individual such as education, meetings e.g. confe-
rences, professional books, peer reviews and other forms of sharing, job mobility,
membership in professional organisations etc. While none of those activities may
directly aim at the particular piece of code, they all interactions that engage persons
involved with the code.

8. Implications

There are several direct implications of the proposition when it comes to sup-
porting the code comprehension. In general, they require to shift the interest, at
least partially, from the psychological context of maintainers reading the code to
the wider social context of developers and maintainers participating in the variety
of interactions within and outside the context of the organisation.

It is, for example, possible that there is a correlation between the extent both
developers and maintainers were involved in similar social activities (e.g. attended
schools with similar curriculum, met likely-minded mentors or even red same books)
and the quality with which they comprehend each other’s code. Thus, the impro-
vements in code comprehension may lie in creating such shared acculturation, e.g.
in a form of standardised education or the growth in learning societies or even
in a form of popular participation in the open code movement.

Further, this has implications on data that has to be captured to aid future
comprehension. It may be that the important factor is to record the standardised

38 P. Cofta

professional background of the developer or the maintainer, or to capture their
contribution to other projects (in anticipation that the more projects they share,
the more they are involved in the interaction).

As time progress, the ‘old’ meaning and the ‘new’ one may diverge. However, it
does not mean that the new meaning as comprehended by the developer and the new
meaning as comprehended by the maintainer must diverge. Assuming that they are
still within the same social systems (e.g. by participating in the same conferences),
their comprehension of the code may develop (and evolve) in parallel.

Further, there is an interesting question of analysing how to measure the discre-
pancy or the similarity of code comprehension and how to measure the similarity
of experience of individuals involved. It may be that particular mental traits develop
so early that only the standardisation of primary education will help, but it may be
equally possible that even fully developed individuals can converge their meanings
of allowed to interact.

Next, there is a question of how to construct the process by which developers
can acquire experience that governs the creation of meanings. It is possible that
this is a task for the educational forces, but it is also possible that the best approach
would be to equip developers with tools that will allow them to capture and reflect
on their approach to code comprehension.

This leads to the question of automation — to what extent code comprehension
can be standardised through automation, and what is the best way to capture the col-
lective expertise of developers. It is possible that solutions that allow developers to
directly express their approach to comprehension may be beneficial.

9. Conclusions

This paper proposes to conceptualise code comprehension as a construction
(and re-construction) of meanings, in expectation that this approach will address
social aspects of comprehension, that are believed to be underdeveloped. The paper
identifies some areas of deficiency, describes social aspects of code comprehension
and then introduces concepts derived from the social systems theory that drives
the conceptualisation, demonstrating its relevance to code comprehension. What
follows is the review of areas that may address those deficiencies.

The proposed approach can bring several benefits.
•	 Re-focusing	efforts	towards	social	aspects	of	code	comprehension.	With	

the clear deficiency of research work on social aspects of code comprehen-
sion (as comparing with psychological aspects), the proposed approach
introduces a solid theoretical platform that can both guide and integrate
research in this area.

39Code comprehension as a distributed construction of meanings

•	 Align	with	current	trends	in	software	engineering	practices.	Software	main-
tenance and code comprehension is increasingly the collaborative work,
and this trend should be reflected in research that can take into account
the specificity of such a collaborative-yet-distant work.

•	 Anticipate	growth	in	code	re-development	and	re-use.	The	shared	under-
standing of the code, fostered by well-maintained interaction may lead to
further improvements in the re-use of existing code, possibly contributing
to improvements in its quality.

The work has been funded as a part of the statutory research of the UTP University of Science and
Technology, Bydgoszcz.

The article was prepared on the basis of a paper presented at the International Conference of Software
Engineering KKIO’18. Pułtusk, September 27-28, 2018.

Received August 2, 2018. Revised April 4, 2019.

Piotr Cofta https://orcid.org/0000-0002-4269-6590.

REFERENCES

 [1] Baker B., Gupta O., Naik N., Raskar R., Designing Neural Network Architectures using Re-
inforcement Learning, Published as a conference paper at ICLR 2017, https://openreview.net/
pdf?id=S1c2cvqee, [accessed 11 December 2017].

 [2] Boehm B.W., Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NH, 1981.
 [3] Brooks R., Towards a theory of the comprehension of computer programs, International Journal

of Human-Computer Studies, 18, 6, June 1983, 543-554.
 [4] Carneiro G., Mendonca M.G., SourceMiner − A Multi-perspective Software Visualization Envi-

ronment, Enterprise Information Systems: 15h International Conference, ICEIS 2013, Angers,
France, July 4-7, 2013, Revised Selected Papers.

 [5] Cofta P., The Foundations of a Trustworthy Web, Now Publishers Inc. Foundations and Trends
in Web Science: vol. 3, no. 3-4, 2013, pp. 137-385. http://dx.doi.org/10.1561/1800000020.

 [6] Damasevicius R., Analysis of Software Design Artifacts for Socio-Technical Aspects, INFOCOMP,
v. 6, n. 4, Dec. 2007, p. 7-16, http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/
view/190, [accessed: 3 February 2018].

 [7] Deimel L., Naveda J., Reading Computer Programs: Instructor’s Guide and Exercises, Technical
Report CMU/SEI-90-EM-3, Software Engineering Institute, Carnegie Mellon University, 1990,
https://www.sei.cmu.edu/reports/90em003.pdf., [accessed: 15 December 2017].

 [8] Ducasse S., Girba T., Lanza M., Demeyer S., Moose: a Collaborative and Extensible Reengi-
neering Environment, 2005, http:// scg.unibe.ch/ archive/ papers/ Duca05aMooseBookChapter.
pdf, [accessed: 3 February 2018].

 [9] Fjeldstad R.K., Hamlen W.T., Application Program Maintenance Study: Report to Our Respondents,
Proceedings GUIDE 48, Philadelphia, PA, April 1983, https://doi.org/10.1145/336512.336534.

[10] Flor N.V., Hutchins E., Analyzing Distributed Cognition in Software Teams: a Case Study
of Collaborative Programming During Adaptive Software Maintenance, [in:] Empirical Studies
of Programmers: Fourth Workshop, 1992, (eds.) J. Koenemann-Belliveau, T. Moher and S. Ro-
bertson, Norwood, NJ: Ablex.

40 P. Cofta

[11] Gadamer H.G., Truth and Method, Continuum, London, New York, 2004.
[12] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of Reusable Object-

-Oriented Software, Addison-Wesley, Boston, 1994.
[13] Habermas J., The Theory of Communicative Action: Reason and the Rationalization of Society,

Polity Press, 1986.
[14] Hamilton J., Danicic S., Dependence communities in source code. Software Maintenance (ICSM),

2012, 28th IEEE International Conference on, https://doi.org/10.1109/ICSM.2012.6405325.
[15] Jin D., Cordy J.R., Dean T.R., Transparent Reverse Engineering Tool Integration Using a Conceptual

Transaction Adapter, Proceedings of the 7th European Conference on Software Maintenance
and Reengineering (CSMR 2003), Benevento, Italy, March 2003, pp. 399-408.

[16] LaToza T.D., Garlan D., Herbsleb J.D., Myers B.A., Program Comprehension as Fact Finding,
Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE2007),
Dubrovnik, Croatia, September 3-7, 2007.

[17] Letovsky S., Cognitive processes in program comprehension, Proc. First Workshop Empirical
Studies of Programmers, Ablex Publishing, Norwood, N.J., 1986, pp. 58-79.

[18] Luhmann N., Social Systems, Stanford University Press, 1996.
[19] Lungu M., Lanza M., Nierstrasz O., Evolutionary and collaborative software architecture

recovery with Softwarenaut, Science of Computer Programming, 79, 2014, 204-223, https://doi.
org/10.1016/j.scico.2012.04.007.

[20] Mayrhauser A., Vans A.M., Program Comprehension During Software Maintenance and Evo-
lution, Computer, vol. 28, issue: 8, Aug. 1995, https://doi.org/10.1109/2.402076.

[21] Meng W., Rilling J., Zhang Y., Witte R., Charl P., An Ontological Software Comprehension
Process, Model. Proc. of the 3rd International Workshop on Metamodels, Schemas, Grammars,
and Ontologies for Reverse Engineering, 2006.

[22] Moeller H.-G., Luhmann Explained: From Souls to Systems, Open Court., 2006.
[23] Muller H.A., Wong K., Tilley S.R., Understanding Software Systems Using Reverse Engine-

ering Technology, 1994, https:// www.researchgate.net/profile/ Hausi_Mueller/publication/
221233487_Understanding_Software_Systems_ Using_Reverse_Engineering_Technology/ links/
00b7d515b635cbf536000000/ Understanding-Software-Systems-Using-Reverse-Engineering-
Technology.pdf., [accessed 02 February 2018].

[24] Nelson M.L., A Survey of Reverse Engineering and Program Comprehension, April 19, 1996,
ODU CS 551 − Software Engineering Survey, https://arxiv.org/ftp/cs/papers/0503/0503068.pdf.,
[accessed 18 January 2018].

[25] O’Brien M.P., Software Comprehension – A Review & Research Direction, Technical Report
UL-CSIS-03-3, 2003, http://xyuan.myweb.cs.uwindsor.ca/480/P2_Review03.pdf., [accessed 03
February 2018].

[26] OMG − Object Management Group (2016) Architecture-Driven Modernization: Knowledge Di-
scovery Meta-Model (KDM). http://www.omg.org/spec/KDM/1.4. [accessed 11 December 2017].

[27] Pereira dos Santos R., Esteves M.G.P., S. Freitas G., Moreira de Souza J., Using Social
Networks to Support Software Ecosystems Comprehension and Evolution, Social Networking, 2014,
3, 108-118. http://dx.doi.org/10.4236/sn.2014.32014.

[28] Rugaber S., Program Comprehension, 1995, http:// citeseerx.ist.psu.edu/ viewdoc/ downlo-
ad?doi=10.1.1.51.1404, [accessed 28 January 2018].

[29] Saussure F., Course in General Linguistics, Bloomsbury Academic, 2013.

41Code comprehension as a distributed construction of meanings

[30] Shannon C.E., Weaver W., The Mathematical Theory of Communication, University of Illinois
Press, 1949.

[31] Sim S.E., Supporting Multiple Program Comprehension Strategies During Software Maintenance,
Master’s Thesis, Department of Computer Science, University of Toronto, 1998.

[32] Skinner B.F., Beyond Freedom and Dignity, Hackett Publishing Company, Inc., 2002.
[33] Storey M.A., Theories, methods and tools in program comprehension: past, present and future,

Program Comprehension, IWPC 2005. Proceedings. 13th International Workshop on. https://
doi.org/10.1109/WPC.2005.38.

[34] Taherkhani A., Malmi L., 2014, Beacon- and Schema-Based Method for Recognizing Algorithms
from Students’ Source Code, Journal of Educational Data Mining, vol. 5, no 2, 2013.

[35] Tiemens T., Cognitive Models of Program Comprehension, 1989, https://pdfs.semanticscholar.
org/052e/4a854a35c5e92b9c91fddfdfe07da119f83b.pdf, [accessed: 2 February 2018].

[36] Tonella P., Potrich A., Reverse Engineering of Object Oriented Code, Springer, 2005.

P. COFTA

Podejście do zrozumienia kodu jako do konstrukcji sensu
Streszczenie: Rozumienie kodu, istotna część inżynierii oprogramowania, jest obecnie badane
głównie z pozycji psychologii, a w znacznie mniejszym stopniu z pozycji socjologii. Przypuszczalnie
spowodowane jest to odczuciem, że dostępne teorie socjologiczne nie odnoszą się do problemów
związanych z rozumieniem kodu. Ten artykuł argumentuje, że socjologiczna teoria systemów społecznych
może znaleźć zastosowanie w badaniach nad rozumieniem kodu. Proponuje on skoncentrowanie się
na formach systemów społecznych, które pozwalają na spójną rekonstrukcję znaczenia kodu. Artykuł
ilustruje rozważania serią przypadków użycia, demonstrując, że rozumienie kodu jest i powinno być
traktowane jako działanie społeczne, opisywalne odpowiednimi teoriami. Następnie skoncentrowano
się na proponowanym wykorzystaniu teorii systemów społecznych, aby zakończyć omówieniem
potencjalnych implikacji nowego podejścia na różne obszary badań.
Słowa kluczowe: informatyka, rozumienie kodu, teoria systemów społecznych, inżynieria odwrotna,
utrzymanie oprogramowania
DOI: 10.5604/01.3001.0013.3001

