PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on electrokinetic of kaolinite particles in aqueous suspensions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Influence of aqueous phase properties and process parameters on kaolinite particle zeta potential was quantified by electrophoresis experiments. The results indicated that pH strongly altered the zeta potential of kaolinite and it decreases at the beginning and then increases in the range of pH = 2–13. The activity of different cations changes the zeta potential and has the following tendency of Al3+ > Ca2+ > Mg2+ > Na+ and the zeta potential increases due to heterocoagulation of different mineral particles in suspension. It was found that the zeta potential of kaolinite particles increases after the suspension was stirred and decreases at the beginning, and then increases with soaking time. The FTIR results showed that the zeta potential takes into account ion adsorption and the change of Si–O, Al–O and Al–OH groups on the surface of the kaolinite particles.
Słowa kluczowe
Rocznik
Strony
659--672
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Anhui University of Science and Technology, School of Materials Science and Engineering, Huainan 232001, China
autor
  • Anhui University of Science and Technology, School of Materials Science and Engineering, Huainan 232001, China
autor
  • Anhui University of Science and Technology, School of Materials Science and Engineering, Huainan 232001, China
Bibliografia
  • 1. ALKAN M., DEMIRBAS Ö., DOĞAN M., 2005. Electrokinetic properties of kaolinite in mono-and multivalent electrolyte solutions. Micropor. and Mesopor. Mat. 83, 51–59.
  • 2. CHASSAGNE C., MIETTA F., WINTERWERP J.C., 2009. Electrokinetic study of kaolinite suspensions. J. Colloid Interf. Sci. 336, 352–359.
  • 3. DAI X.N., WANG X.F., 2002. Effect of pH on the zeta potential of MMH-kaolinite suspentions. J. Dezhou College. 18,42–45.
  • 4. DUMAN O., TUNC S., CETINKAYA A., 2012. Electrokinetic and rheological properties of kaolinite inpoly(diallyldimethylammonium chloride), poly(sodium 4-styrene sulfonate) and poly(vinyl alcohol) solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 394, 23-32.
  • 5. GAN W. B., LIU Q., 2008. Coagulation of bitumen with kaolinite in aqueous solutions containing Ca2+,Mg2+ and Fe3+: Effect of citric acid. J. Colloid Interf. Sci.. 324, 85–91.
  • 6. GUPTA V., HAMPTON M. A., STOKES J. R., 2011. Particle interactions in kaolinite suspensions and corresponding aggregate structures. J. Colloid Interf. Sci. 358, 95–103.
  • 7. HOU T., XU R. K., ZHAO A. Z.,2007. Interaction between electric double layers of kaolinite and Fe/Al oxides in suspensions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 297(2007), 91–94.
  • 8. HU H. M., CHEN X. Z., WANG Y., 2001. The application of dynamic potential in determining the coal dressing wastewater. Enviro. Protect. Sci. 104, 14–15.
  • 9. HU Y., LIU X., 2003. Chemical composition and surface property of kaolins. Miner. Eng. 8, 1279–1284.
  • 10. HUANG H.W., CHE P., 2007. Research on micro-mechanism of softening and argillitization of mudstone. J. Tongji Univ. 35, 866–870.
  • 11. HUSSAIN S. A., DEMIRCI S., ÖZBAYOĞLU G., 1996. Zeta potential measurements on three clays from Turkey and effects of clays on coal flotation. J. Colloid Interf. Sci. 184, 535–541.
  • 12. KIHC M.G., HOSTEN C., 2010. A comparative study of electrocoagulation and coagulation of aqueous suspensions of kaolinite powders. J. Hazard. Mater. 176, 735–740.
  • 13. LU S. C., HON D., 1992. Interface separation principle and application. Beijing: Metallurgical Industry Press.
  • 14. MA C., EGGLETON R. A., 1999. Surface layer types of kaolinite: a high resolution transmission electron microscope study. Clays Clay Miner. 47, 181–191.
  • 15. RAO F., RAMIREZ-ACOSTA F. J., SANCHEZ-LEIJA R. J., SONG S.X., LOPEZ-VALDIVIESO A., 2011. Stability of kaolinite dispersions in the presence of sodium and aluminum ions. Appl. Clay Sci. 51, 38–42.
  • 16. SMITH R.W., NARIMATSU Y., 1993. Electrokinetic behavior of kaolinite in surfactant solutions as measured by both the microelectrophoresis and streaming potential methods. Miner. Eng., 7, 753–763.
  • 17. TOMBACZ E., SZEKERES M., 2006. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci. 34, 105–124.
  • 18. TUNC S., DUMAN O., 2008. The effect of different molecular weight of poly(ethylene glycol) on the electrokinetic and rheological properties of Na–bentonite suspensions. Colloids Surf. A. 317,93–99.
  • 19. WANG, D. Z., HU Y. H.,1988. Flotation solution chemistry. Changsha: Hunan Science and Technology Press.
  • 20. WILLIAMS D. J. A., WILLIAMS K. P., 1978. Electrophoresis and zetapotential of kaolinite. J. Colloid Interf. Sci. 65, 9–87.
  • 21. YANG H.L., FAN M.Q., 2010. Relationship between iron consumption, silicon consumption and flocculation characteristics of PFS. J. Enviro. Eng. 4, 2789–2792.
  • 22. YANG S. J., SHEN Z. Y., YING Y. Y., 2001. Distribution of electric charge on crystalline grain surface of kaolinite and its industrial significance. Non-Metal. Miner. 24, 196–198.
  • 23. YIN H. R., WU L. H., FU F. C., 2006. Research and application of nano-kaolin. Mater. Rev. 20, 196–199.
  • 24. ZBIK M.S., SMART R.S.C., MORRIS G.E., 2008. Kaolinite flocculation structure. J. Colloid Interface Sci. 328, 73–80.
  • 25. ZHANG M. Q., LIU J. T., WANG Y. T., 2008. Effects of water hardness on the dispersion of fine coal and kaolinite in coal slurry. J. China Coal Soci. 9, 1058–1062.
  • 26. ZHANG Z. J., LIU J.T., FENG L., 2011. A prediction model based on langmuir theory for equilibrium adsorption amount. J. Northeastern Univ. 32, 749–756.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ba850b2-d9b9-4abc-bd5d-16858fa54389
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.