Identyfikatory
Warianty tytułu
Typographers, programmers and mathematicians or the case of an esthetically pleasing interpolation
Języki publikacji
Abstrakty
The reason for preparing this report is that the author has been convinced or many years that John D. Hobby’s algorithm or connecting Bézier segments, implemented by Donald E. Knuth in METAFONT and later transferred by Hobby to METAPOST, based on the notion o a “mock curvature”, is a genuine pearl which deserves both proper acknowledgement and a far wider awareness of its existence. Of course, one can find nearly all the necessary details in the relevant papers by Hobby and in the METAFONT source, but, needless to say, it is not easy to dig through the publications. The present paper provides a full mathematical description of Hobby’s interpolation algorithm, discusses its advantages and disadvantages (in particular, its instability) and compares Hobby’s approach with a few selected simpler approaches.
Czasopismo
Rocznik
Tom
Strony
11--30
Opis fizyczny
Bibliogr. 8 poz., rys., wykr.
Twórcy
autor
- BOP, Gdańsk
Bibliografia
- 1. Arnold Władimir I., On teaching mathematics. 1997. http://pauli.uni-muenster.de/~munsteg/arnold.html, dostęp 14.04.2013, tłum. polskie: http://main3.amu.edu.pl/~wiadmat/017-026 wa wm37.pdf, dostęp 14.04.2013.
- 2. Hobby John. D., Smooth, Easy to Compute Interpolating Splines. "Discrete and Computational Geometry" 1986 vol. 1(2). ftp://db.stanford.edu/pub/cstr/reports/cs/tr/85/1047/CS-TR-85-1047.pdf, dostęp 14.04.2013.
- 3. Joy Kenneth I., Bernstein Polynomials. 2000. http://www.idav.ucdavis.edu/education/CAGDNotes/CAGDNotes/Bernstein-Polynomials.pdf, dostęp 14.04.2013.
- 4. Knuth Donald E., Digital Typography. CSLI Publications, Stanford California 1999.
- 5. Knuth Donald E., METAFONT : The Program, Computers & Typesetting vol. D. Addison-Wesley, Reading Massachusetts 1986.
- 6. Knuth Donald E., The METAFONT book, Computers & Typesetting vol.C. Addison-Wesley, Reading Massachusetts 1986.
- 7. Manning J.R., Continuity Conditions for Spline Curves. "Computer Journal" 1974 vol. 17(2), s. 181-186. http://comjnl.oxfordjournals.org/content/17/2/181.full.pdf, dostęp 14.04.2013.
- 8. http://pl.wikipedia.org/wiki/Wielomiany Bernsteina, dostęp 14.04.2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b9fa408-9fa2-498c-a609-12bdee381bd2