Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Background: Informatization has enabled global logistics and supply chains (LSC) to capitalize on data-driven analytics to improve logistics performance. At the country level, logistics performance is gauged through the logistics performance index (LPI), where globally 61.25% or 98 countries perform below the mean LPI score. Previous studies focused on logistics informatization in high and moderate LPI rank economies. The paper aims to conduct an exploratory case study in a low LPI performing country to assess the informatization practices of logistics entities and develop a logistics informatization continuum to unlock data analytics for other countries. Methods: The study implements qualitative methods to develop strategic recommendations to reduce global logistics imbalance. We employ a two-layer methodology consisting of thematic analysis and a novel strategic choice approach (SCA) to involve stakeholders for recommendations on obstruction. For thematic analysis, 16 semi-structured interviews were conducted from logistics companies, also onboard 10 trade associations and government representatives for the SCA analysis. Results: We observed many obstructions in informatization; low willingness on informatization, fear of information leakage by humans, low-reciprocity for collaboration, the myth of information and communication technologies (ICT) as an expensive tool, self-interest, and opportunistic behavior. Conclusion: Information-centric and integrated LSC enables data-driven technologies for real-time decision making, vigilance, and data analytics to distinguished the success of a country’s logistics performance. Originality: This study explores the informatization conformity in the logistics sector to connect data analytics. We introduced a novel strategic choice approach in the technology domain for problem structuring. The paper further contributes by suggesting a logistics informatization continuum for low LPI countries to straighten digitalization in the logistics sector.
Wydawca
Czasopismo
Rocznik
Tom
Strony
137--160
Opis fizyczny
Bibliogr. 89 poz., rys., tab., wykr.
Twórcy
autor
- School of Management, Universiti Sains Malaysia, Penang, Malaysia
autor
- School of Information Technology, Monash University, Malaysia Campus, Subang Jaya, Malaysia
autor
- School of Management, Universiti Sains Malaysia, Penang, Malaysia
autor
- Noon Business School, University of Sargodha, Pakistan
Bibliografia
- 1. Altuntaş Vural, C., Roso, V., Halldórsson, Á., Ståhle, G., & Yaruta, M. (2020). Can digitalization mitigate barriers to intermodal transport? An exploratory study. Research in Transportation Business & Management, 37, 100525. https://doi.org/10.1016/j.rtbm.2020.100525
- 2. Bag, S., Gupta, S., & Luo, Z. (2020). Examining the role of logistics 4.0 enabled dynamic capabilities on firm performance. International Journal of Logistics Management, 31(3), 607-628. https://doi.org/10.1108/IJLM-11-2019-0311
- 3. Barreto, L., Amaral, A., & Pereira, T. (2017). Industry 4.0 implications in logistics: an overview. Procedia Manufacturing, 13, 1245-1252. https://doi.org/10.1016/j.promfg.2017.09.045
- 4. Benamati, J. H., Ozdemir, Z. D., & Smith, H. J. (2021). Information Privacy, Cultural Values, and Regulatory Preferences. Journal of Global Information Management, 29(3), 131-164. https://doi.org/10.4018/JGIM.2021050106
- 5. Bexelius, A., Carlberg, E. B., & Löwing, K. (2018). Quality of goal setting in pediatric rehabilitation-A SMART approach. Child: Care, Health and Development, 44(6), 850-856. https://doi.org/10.1111/cch.12609
- 6. Birt, L., Scott, S., Cavers, D., Campbell, C., & Walter, F. (2016). Member Checking: A Tool to Enhance Trustworthiness or Merely a Nod to Validation? Qualitative Health Research, 26(13), 1802-1811. https://doi.org/10.1177/1049732316654870
- 7.. Boddy, C. R. (2016). Sample size for qualitative research. Qualitative Market Research: An International Journal, 19(4), 426-432. https://doi.org/10.1108/QMR-06-2016-0053
- 8. Bryman, A., & Bell, E. (2009). Business Research Methods (2nd ed). Oxford University Press.
- 9. Çelebi, D. (2019). The role of logistics performance in promoting trade. Maritime Economics & Logistics, 21(3), 307-323. https://doi.org/10.1057/s41278-017-0094-4
- 10. Chaudhuri, A., Dukovska-Popovska, I., Subramanian, N., Chan, H. K., & Bai, R. (2018). Decision-making in cold chain logistics using data analytics: a literature review. In International Journal of Logistics Management 29(3), 839-861. https://doi.org/10.1108/IJLM-03-2017-0059
- 11. Chen, Y.-T., Sun, E. W., Chang, M.-F., & Lin, Y.-B. (2021). Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0. International Journal of Production Economics, 238, 108157. https://doi.org/10.1016/j.ijpe.2021.108157
- 12. Creswell, J. (2009). Research design: qualitative, quantitative, and mixed methods approaches (3rd edn). Sage, Thousand Oaks, CA.
- 13. Cruz-Jesus, F., Oliveira, T., & Bacao, F. (2018). The Global Digital Divide. Journal of Global Information Management, 26(2), 1-26. https://doi.org/10.4018/JGIM.2018040101
- 14. de Sousa Pereira, L., & Costa Morais, D. (2020). The strategic choice approach to the maintenance management of a water distribution system. Urban Water Journal, 17(1), 23-31. https://doi.org/10.1080/1573062X.2020.1734945
- 15. Dunke, F., & Nickel, S. (2020). Improving company-wide logistics through collaborative track and trace IT services. International Journal of Logistics Systems and Management, 35(3), 329-353. https://doi.org/10.1504/IJLSM.2020.105916
- 16. Dworkin, S. L. (2012). Sample Size Policy for Qualitative Studies Using In-Depth Interviews. Archives of Sexual Behavior, 41(6), 1319-1320. https://doi.org/10.1007/s10508-012-0016-6
- 17. Fang, D., & Ren, Q. (2019). Optimal decision in a dual-channel supply chain under potential information leakage. Symmetry, 11(3), 308. https://doi.org/10.3390/sym11030308
- 18. Friend, J. (1992). New directions in software for strategic choice. European Journal of Operational Research, 61(1-2), 154-164. https://doi.org/10.1016/0377-2217(92)90277-G
- 19. Friend, J. (2011). The Strategic Choice Approach. In Wiley Encyclopedia of Operations Research and Management Science (pp. 121-158). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470400531.eorms0971
- 20. Friend, J. K., Norris, M. E., & Stringer, J. (1988). The Institute for Operational Research: An Initiative to Extend the Scope of OR. Journal of the Operational Research Society, 39(8), 705-713. https://doi.org/10.1057/jors.1988.125
- 21. Gani, A. (2017). The Logistics Performance Effect in International Trade. Asian Journal of Shipping and Logistics, 33(4), 279–288. https://doi.org/10.1016/j.ajsl.2017.12.012
- 22. Gezikol, B., Tunahan, H., & Özsoy, S. (2020). Determinants of Freight Volume and Efficiency in Transportation and Storage Sector. Logforum, 16(3), 385-396. https://doi.org/10.17270/J.LOG.2020.453
- 23. Guangwen Kong, Sampath Rajagopalan, Hao Zhang, (2012) Revenue Sharing and Information Leakage in a Supply Chain. Management Science 59(3):556-572. https://doi.org/10.1287/mnsc.1120.1627
- 24. Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004
- 25. Gunes, B., Kayisoglu, G., & Bolat, P. (2021). Cyber security risk assessment for seaports: A case study of a container port. Computers and Security, 103. https://doi.org/10.1016/j.cose.2021.102196
- 26. Halaszovich, T. F., & Kinra, A. (2020). The impact of distance, national transportation systems and logistics performance on FDI and international trade patterns: Results from Asian global value chains. Transport Policy, 98, 35-47. https://doi.org/10.1016/j.tranpol.2018.09.003
- 27. Hanna, N. K., & Qiang, C. Z. W. (2010). China’s Emerging Informatization Strategy. Journal of the Knowledge Economy, 1(2), 128-164. https://doi.org/10.1007/s13132-009-0001-z
- 28. Hausman, W. H., Lee, H. L., & Subramanian, U. (2013). The impact of logistics performance on trade. Production and Operations Management, 22(2), 236-252. https://doi.org/10.1111/j.1937-5956.2011.01312.x
- 29. Heeks, R., & Renken, J. (2018). Data justice for development: What would it mean? Information Development, 34(1), 90-102. https://doi.org/10.1177/0266666916678282
- 30. Hopkins, J., & Hawking, P. (2018). Big Data Analytics and IoT in logistics: a case study. International Journal of Logistics Management, 29(2), 575-591. https://doi.org/10.1108/IJLM-05-2017-0109
- 31. Imam Yudhistyra, W., Marta Risal, E., Raungratanaamporn, I., & Ratanavaraha, V. (2020). Exploring Big Data Research: A Review of Published Articles from 2010 to 2018 Related to Logistics and Supply Chains. Operations and Supply Chain Management, 13(2), 134-149. http://doi.org/10.31387/oscm0410258
- 32. Jarvenpaa, S. L., & Staples, D. S. (2000). The use of collaborative electronic media for information sharing: an exploratory study of determinants. The Journal of Strategic Information Systems, 9(2-3), 129-154. https://doi.org/10.1016/S0963-8687(00)00042-1
- 33. Kabak, Ö., Önsel Ekici, Ş., & Ülengin, F. (2020). Analyzing two-way interaction between the competitiveness and logistics performance of countries. Transport Policy, 98, 238–246. https://doi.org/10.1016/j.tranpol.2019.10.007
- 34. Kapkaeva, N., Gurzhiy, A., Maydanova, S., & Levina, A. (2021). Digital Platform for Maritime Port Ecosystem: Port of Hamburg Case. Transportation Research Procedia, 54(2020), 909–917. https://doi.org/10.1016/j.trpro.2021.02.146
- 35. Keith, J. E., Lee, D.-J., & Leem, R. G. (2004). The Effect of Relational Exchange Between the Service Provider and the Customer on the Customer’s Perception of Value. Journal of Relationship Marketing, 3(1), 3-33. https://doi.org/10.1300/J366v03n01_02
- 36. Kembro, J., Näslund, D., & Olhager, J. (2017). Information sharing across multiple supply chain tiers: A Delphi study on antecedents. International Journal of Production Economics, 193, 77-86. https://doi.org/10.1016/j.ijpe.2017.06.032
- 37. Kinra, A., Hald, K. S., Mukkamala, R. R., & Vatrapu, R. (2020). An unstructured big data approach for country logistics performance assessment in global supply chains. International Journal of Operations and Production Management, 40(4), 439–458. https://doi.org/10.1108/IJOPM-07-2019-0544
- 38. Kirono, I., Armanu, A., Hadiwidjojo, D., & Solimun, S. (2019). Logistics performance collaboration strategy and information sharing with logistics capability as mediator variable (study in Gafeksi East Java Indonesia). International Journal of Quality & Reliability Management, 36(8), 1301–1317. https://doi.org/10.1108/IJQRM-11-2017-0246
- 39. Kourtit, K., & Nijkamp, P. (2011). Strategic choice analysis by expert panels for migration impact assessment. International Journal of Business and Globalisation, 7(2), 166. https://doi.org/10.1504/IJBG.2011.041831
- 40. Lechler, S., Canzaniello, A., Roßmann, B., von der Gracht, H. A., & Hartmann, E. (2019). Real-time data processing in supply chain management: revealing the uncertainty dilemma. International Journal of Physical Distribution & Logistics Management, 49(10), 1003-1019. https://doi.org/10.1108/IJPDLM-12-2017-0398
- 41. Li, W., Ardichvili, A., Maurer, M., Wentling, T., & Stuedemann, R. (2007). Impact of Chinese Culture Values on Knowledge Sharing Through Online Communities of Practice. International Journal of Knowledge Management, 3(3), 46-59. https://doi.org/10.4018/jkm.2007070103
- 42. Liu, C., Feng, Y., Lin, D., Wu, L., & Guo, M. (2020). Iot based laundry services: an application of big data analytics, intelligent logistics management, and machine learning techniques. International Journal of Production Research, 58(17), 5113-5131. https://doi.org/10.1080/00207543.2019.1677961
- 43. Liu, H., Jiang, W., Feng, G., & Chin, K. S. (2020). Information leakage and supply chain contracts. Omega, 90, 101994. https://doi.org/10.1016/j.omega.2018.11.003
- 44. Liu, C., Zhou, Y., Cen, Y., & Lin, D. (2019). Integrated application in intelligent production and logistics management: technical architectures concepts and business model analyses for the customised facial masks manufacturing. International Journal of Computer Integrated Manufacturing, 32(4–5), 522-532. https://doi.org/10.1080/0951192X.2019.1599434
- 45. Long, T., & Johnson, M. (2000). Rigour, reliability and validity in qualitative research. Clinical Effectiveness in Nursing, 4(1), 30-37. https://doi.org/10.1054/cein.2000.0106
- 46. Lu, Q., Liu, B., & Song, H. (2020). How can SMEs acquire supply chain financing: the capabilities and information perspective. Industrial Management and Data Systems, 120(4), 784-809. https://doi.org/10.1108/IMDS-02-2019-0072
- 47. Lui, S. S., Wong, Y. Y., & Liu, W. (2009). Asset specificity roles in interfirm cooperation: Reducing opportunistic behavior or increasing cooperative behavior?. Journal of Business research, 62(11), 1214-1219. https://doi.org/10.1016/j.jbusres.2008.08.003
- 48. Luttermann, S., Kotzab, H., & Halaszovich, T. (2020). The impact of logistics performance on exports, imports and foreign direct investment. World Review of Intermodal Transportation Research, 9(1), 27. https://doi.org/10.1504/WRITR.2020.106444
- 49. Maheshwari, S., Gautam, P., & Jaggi, C. K. (2021). Role of Big Data Analytics in supply chain management: current trends and future perspectives. International Journal of Production Research 59(6), 1875-1900. https://doi.org/10.1080/00207543.2020.1793011
- 50. Mangina, E., Narasimhan, P. K., Saffari, M., & Vlachos, I. (2020). Data analytics for sustainable global supply chains. Journal of Cleaner Production, 255, 120300. https://doi.org/10.1016/j.jclepro.2020.120300
- 51. Merriam, S. B. (2009). Qualitative Research: A Guide to Design and Implementation.
- 52. Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 81-97. https://doi.org/10.1037/h0043158
- 53. Ministry of Finance. (2020). Transport and Communication. In Economic Survey of Pakistan 2019-20.
- 54. Mirzabeiki, V., Roso, V., & Sjöholm, P. (2016). Collaborative tracking and tracing applied on dry ports. International Journal of Logistics Systems and Management, 25(3), 425-440. https://doi.org/10.1504/IJLSM.2016.079834
- 55. Moldabekova, A., Philipp, R., Reimers, H. E., & Alikozhayev, B. (2021). Digital Technologies for Improving Logistics Performance of Countries. Transport and Telecommunication, 22(2), 207-216. https://doi.org/10.2478/ttj-2021-0016
- 56. Najjar, M. S., Dahabiyeh, L., & Nawayseh, M. (2019). Share if you care: The impact of information sharing and information quality on humanitarian supply chain performance - a social capital perspective. Information Development, 35(3), 467-481. https://doi.org/10.1177/0266666918755427
- 57. Önsel Ekici, Ş., Kabak, Ö., & Ülengin, F. (2019). Improving logistics performance by reforming the pillars of Global Competitiveness Index. Transport Policy, 81, 197-207. https://doi.org/10.1016/j.tranpol.2019.06.014
- 58. Park, Y.-H., & Jeong, Y.-S. (2016). An empirical analysis on the performance of the third-party logistics in the Korean exporter. Journal of Korea Trade, 20(1), 97-114. https://doi.org/10.1108/JKT-03-2016-006
- 59. Peltokorpi, V. (2006). Knowledge sharing in a cross-cultural context: Nordic expatriates in Japan. Knowledge Management Research & Practice, 4(2), 138-148. https://doi.org/10.1057/palgrave.kmrp.8500095
- 60. Pfleeger, S. L., & Caputo, D. D. (2012). Leveraging behavioral science to mitigate cyber security risk. Computers and Security, 31(4), 597-611. https://doi.org/10.1016/j.cose.2011.12.010
- 61. Pomegbe, W. W. K., Li, W., Dogbe, C. S. K., & Otoo, C. O. A. (2021). Closeness or opportunistic behavior? Mediating the business ecosystem governance mechanisms and coordination relationship. Cross Cultural & Strategic Management 28(3), 530-552. https://doi.org/10.1108/CCSM-01-2020-0013
- 62. Rahimi, Y., Matyshenko, I., Kapitan, R., & Pronchakov, Y. (2020). Organization the information support of full logistic supply chains within the industry 4.0. International Journal for Quality Research, 14(4), 1279-1290. https://doi.org/10.24874/IJQR14.04-19
- 63. Ramanathan, U., & Ramanathan, R. (2021). Information Sharing and Business Analytics in Global Supply Chains. In International Encyclopedia of Transportation (pp. 71-75). Elsevier. https://doi.org/10.1016/B978-0-08-102671-7.10222-2
- 64. Robertson, M., & Swan, J. (2003). “Control - What Control?” Culture and Ambiguity Within a Knowledge Intensive Firm*. Journal of Management Studies, 40(4), 831-858. https://doi.org/10.1111/1467-6486.00362
- 65. Rogers, E. M. (2000). Informatization, globalization, and privatization in the new Millenium. Asian Journal of Communication, 10(2), 71–92. https://doi.org/10.1080/01292980009364785
- 66. Rouibah, K., Dihani, A., & Al-Qirim, N. (2020). Critical success factors affecting information system satisfaction in public sector organizations: A perspective on the mediating role of information quality. Journal of Global Information Management 28(3), 77-98. https://doi.org/10.4018/JGIM.2020070105
- 67. Sahal, R., Breslin, J. G., & Ali, M. I. (2020). Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case. Journal of Manufacturing Systems, 54, 138-151. https://doi.org/10.1016/j.jmsy.2019.11.004
- 68. Schmidt, L., Falk, T., Siegmund-Schultze, M., & Spangenberg, J. H. (2020). The Objectives of Stakeholder Involvement in Transdisciplinary Research. A Conceptual Framework for a Reflective and Reflexive Practise. Ecological Economics, 176, 106751. https://doi.org/10.1016/j.ecolecon.2020.106751
- 69. Schoenherr, T., & Speier-Pero, C. (2015). Data science, predictive analytics, and big data in supply chain management: Current state and future potential. Journal of Business Logistics, 36(1), 120-132. https://doi.org/10.1111/jbl.12082
- 70. Senir, G. (2021). Comparison of domestic logistics performances of Turkey and European union countries in 2018 with an integrated model. Logforum, 17(2), 193-204. https://doi.org/10.17270/J.LOG.2021.576
- 71. Soh, K. L., Wong, W. P., & Tang, C. F. (2021). The role of institutions at the nexus of logistic performance and foreign direct investment in Asia. The Asian Journal of Shipping and Logistics, 37(2), 165-173. https://doi.org/10.1016/j.ajsl.2021.02.001
- 72. Sousa, D. (2014). Validation in Qualitative Research: General Aspects and Specificities of the Descriptive Phenomenological Method. Qualitative Research in Psychology, 11(2), 211-227. https://doi.org/10.1080/14780887.2013.853855
- 73. Srinivasan, R., & Swink, M. (2018). An Investigation of Visibility and Flexibility as Complements to Supply Chain Analytics: An Organizational Information Processing Theory Perspective. Production and Operations Management, 27(10), 1849-1867. https://doi.org/10.1111/poms.12746
- 74. Suarez-Moreno, J. D., Garcia-Castillo, J., Castaneda-Velasquez, A. M., & Cardenas-Hurtado, A. F. (2019). Making horizontal collaboration among shippers feasible through the application of an ITS. 2019 2nd Latin American Conference on Intelligent Transportation Systems (ITS LATAM), 1-6. https://doi.org/10.1109/ITSLATAM.2019.8721342
- 75. Tan, K. H., Wong, W. P., & Chung, L. (2016). Information and Knowledge Leakage in Supply Chain. Information Systems Frontiers, 18(3), 621-638. https://doi.org/10.1007/s10796-015-9553-6
- 76. The World Bank. (2018a). Connecting to Compete 2018- Trade Logistics in the Global Economy. http://documents1.worldbank.org/curated/en/576061531492034646/pdf/128355-WP-P164390-PUBLIC-LPIfullreportwithcover.pdf
- 77. The World Bank. (2018b). LPI Global Rankings 2018. International LPI. https://lpi.worldbank.org/international/global/2018
- 78. Todella, E., Lami, I. M., & Armando, A. (2018). Experimental Use of Strategic Choice Approach (SCA) by Individuals as an Architectural Design Tool. Group Decision and Negotiation, 27(5), 811–826. https://doi.org/10.1007/s10726-018-9567-9
- 79. Tsai, F.-S., Kuo, C.-C., & Lin, J. L. (2020). Knowledge Heterogenization of the Franchising Literature Applying Transaction Cost Economics. Economies, 8(4), 106. https://doi.org/10.3390/economies8040106
- 80. Tushman, M. L., & Nadler, D. A. (1978). Information Processing as an Integrating Concept in Organizational Design . Academy of Management Review, 3(3), 613–624. https://doi.org/10.5465/amr.1978.4305791
- 81. Voss, K. E., Johnson, J. L., Cullen, J. B., Sakano, T., & Takenouchi, H. (2006). Relational exchange in US‐Japanese marketing strategic alliances. International Marketing Review, 23(6), 610–635. https://doi.org/10.1108/02651330610712139
- 82. Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
- 83. Wong, W. P., Sinnandavar, C. M., & Soh, K.-L. (2021). The relationship between supply environment, supply chain integration and operational performance: The role of business process in curbing opportunistic behaviour. International Journal of Production Economics, 232, 107966. https://doi.org/10.1016/j.ijpe.2020.107966
- 84. Xu, J., Pero, M. E. P., Ciccullo, F., & Sianesi, A. (2021). On relating big data analytics to supply chain planning: towards a research agenda. International Journal of Physical Distribution & Logistics Management, ahead-of-print(ahead-of-print). https://doi.org/10.1108/IJPDLM-04-2020-0129
- 85. Yan, Z., Ismail, H., Chen, L., Zhao, X., & Wang, L. (2019). The application of big data analytics in optimizing logistics: a developmental perspective review. Journal of Data, Information and Management, 1(1–2), 33–43. https://doi.org/10.1007/s42488-019-00003-0
- 86. Zaheer, N., & Trkman, P. (2017). An information sharing theory perspective on willingness to share information in supply chains. The International Journal of Logistics Management, 28(2), 417–443. https://doi.org/10.1108/IJLM-09-2015-0158
- 87. Zhang, D. Y., Cao, X., Wang, L., & Zeng, Y. (2012). Mitigating the risk of information leakage in a two-level supply chain through optimal supplier selection. Journal of Intelligent Manufacturing, 23(4), 1351-1364. https://doi.org/10.1007/s10845-011-0527-3
- 88. Zhang, D. Y., Zeng, Y., Wang, L., Li, H., & Geng, Y. (2011). Modeling and evaluating information leakage caused by inferences in supply chains. Computers in Industry, 62(3), 351-363. https://doi.org/10.1016/j.compind.2010.10.002
- 89. Zhang, J., Yarom, O. A., & Liu-Henke, X. (2020). Decentralized, Self-optimized Order-acceptance Decision of Autonomous Guided Vehicles in an IoT-based Production Facility. International Journal of Mechanical Engineering and Robotics Research, 10(1), 1-6. https://doi.org/10.18178/ijmerr.10.1.1-6
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b99d43b-bb8f-4e08-9aab-b51ba8c6e432