PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation into a hybrid mooring system with hydrodynamic response and mooring tension from a DeepCwind floating wind turbine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the effect of buoys and a clump weight on the mooring lines and the dynamic response of the floating platform. The full-scale of the OC4-DeepCwind semisubmersible FOWT platform is analyzed using the boundary element method (BEM) with ANSYS-AQWA software, when considering regular wave conditions. Platform motions and mooring line tension in the surge, heave, and pitch are presented and discussed in the time domain analyses (TDA) and frequency domain analyses (FDA). Validation is performed by compression of the platform motion RAO and the fairlead tension RAO magnitudes in the surge, heave, and pitch (for both numerical and experimental data) under seven sea states’ regular waves. The results show that increasing the number of buoys at a constant volume decreases the surge and pitch motion amplitude, while the heave motion increases slightly. Adding the buoy and clump weight (type 1) to the mooring line reduces the oscillation amplitude tension. In addition, raising the number of buoys increases the oscillation tension.
Słowa kluczowe
Rocznik
Strony
11--21
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Amirkabir University of Technology, Department of Maritime Engineering Marine and Hydrokinetic Energy Group, Tehran, Iran
  • Amirkabir University of Technology, Department of Maritime Engineering Marine and Hydrokinetic Energy Group, Tehran, Iran
  • Amirkabir University of Technology, Department of Maritime Engineering Marine and Hydrokinetic Energy Group, Tehran, Iran
Bibliografia
  • 1. Barltrop, N.D.P. (Eds.) (1998) Floating Structures – A guide for design and analysis. Volume 1. Energy Institute.
  • 2. Benassai, G., Campanile, A., Piscopo, V. & Scamardella, A. (2014) Mooring control of semisubmersible structures for wind turbines. Procedia Engineering 70, pp. 132–141, doi: 10.1016/j.proeng.2014.02.016.
  • 3. Brommundt, M., Krause, L., Merz, K. & Muskulus, M. (2012) Mooring system optimization for floating wind turbines using frequency domain analysis. Energy Procedia 24, pp. 289–296, doi: 10.1016/j.egypro.2012.06.111.
  • 4. Coulling, A.J., Goupee, A.J., Robertson, A.N., Jonkman, J.M. & Dagher, H.J. (2013) Validation of a FAST semisubmersible floating wind turbine numerical model with Deep-Cwind test data. Journal of Renewable and Sustainable Energy 5, 023116, doi: 10.1063/1.4796197.
  • 5. Cummins, W.E. (1962) The impulse response function and ship motions. Schiffstechnik 9, pp. 101–109.
  • 6. Ghafari, H. & Dardel, M. (2018) Parametric study of catenary mooring system on the dynamic response of the semisubmersible platform. Ocean Engineering 153, 1, pp. 319–332, doi: 10.1016/j.oceaneng.2018.01.093.
  • 7. Ghafari, H.R., Ketabdari, M.J., Ghassemi, H. &Homayoun, E. (2019) Numerical study on the hydrodynamic interaction between two floating platforms in Caspian Sea environmental conditions. Ocean Engineering 188, 106273, doi: 10.1016/j.oceaneng.2019.106273.
  • 8. Hall, M. & Goupee, A. (2015) Validation of a lumpedmass mooring line model with DeepCwind semisubmersible model test data. Ocean Engineering 104, pp. 590–603, doi: 10.1016/j.oceaneng.2015.05.035.
  • 9. Hordvik, T. (2011) Design analysis and optimisation of mooring system for floating wind turbines Student: Open Floating wind turbine Mooring system Optimisation. Master Thesis. Norwegian University of Science and Technology. [Online]. Available: https://core.ac.uk/download/ pdf/52099634.pdf [Accessed: May 14, 2022].
  • 10. Li, J., Jiang, Y., Tang, Y., Qu, X. & Zhai, J. (2017) Effects of second-order difference-frequency wave forces on floating wind turbine under survival condition. Transactions of Tianjin University 23, pp. 130–137, doi: 10.1007/s12209- 017-0037-2.
  • 11. Liu, Z., Tu, Y., Wang, W. & Qian, G. (2019) Numerical analysis of a catenary mooring system attached by clump masses for improving the wave-resistance ability of a spar buoy-type floating offshore wind turbine. Applied Science 9, 1075, doi: 10.3390/app9061075.
  • 12. Mavrakos, S.A. & Chatjigeorgiou, J. (1997) Dynamic behaviour of deep water mooring lines with submerged buoys. Computers & Structures 64, pp. 819–835, doi: 10.1016/ S0045-7949(96)00169-1.
  • 13. Mavrakos, S.A., Papazoglou, V.J., Triantafyllou, M.S. & Brando, P. (1991) Experimental and numerical study on the effect of buoys on deep water mooring dynamics‏. The First International Offshore and Polar Engineering Conference. Edinburgh, UK. [Online]. Available: https://onepetro. org/conference-paper/ISOPE-I-91-098 [Accessed: May 14, 2021].
  • 14. Motallebi, M., Ghafari, H.R., Ghassemi, H. & Shokouhian, M. (2020) Calculating the second-order hydrodynamic force on fixed and floating tandem cylinders. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 62, pp. 108–115, 2020, doi: 10.17402/425.
  • 15. Qiao, D. & Ou, J. (2013) Global responses analysis of a semisubmersible platform with different mooring models in South China Sea. Ships and Offshore Structures 8, pp. 441–456, doi: 10.1080/17445302.2012.718971.
  • 16. Vicente, P.C., Falcão, A.F. & Justino, P.J. (2011) Slackchain mooring configuration analysis of a floating wave energy converter. In Proceedings of the 26th International Workshop on Water Waves and Floating Bodies, thens, Greece (Vol. 17). Available: http://www.iwwwfb.org/ Abstracts/iwwwfb26/iwwwfb26_50.pdf [Accessed: May 14, 2022].
  • 17. Yuan, Z.-M., Incecik, A. & Ji, C. (2014) Numerical study on a hybrid mooring system with clump weights and buoys. Ocean Engineering 88, pp. 1–11, doi: 10.1016/j. oceaneng.2014.06.002.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b92238b-6053-41ff-8065-976a56e8a471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.