PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie niekonwencjonalnych sorbentów do usuwania Basic Violet 10 z roztworów wodnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The use of non-conventional sorbents for removal of Basic Violet 10 from aqueous solutions
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawione zostały wyniki badań efektywności sorpcji popularnego w przemyśle barwnika kationowego Basic Violet 10 (BV10) z wykorzystaniem na sześciu różnych niekonwencjonalnych sorbentów: chityny, trocin, kompostu, kiszonki kukurydzianej, zeolitu i popiołów lotnych. Dla każdego testowanego sorbentu ustalone zostało optymalne pH sorpcji a także wyznaczona została maksymalna pojemność sorpcyjna względem Basic Violet 10. Do opisu danych eksperymentalnych zastosowano trzy popularne modele sorpcji: Langmuir’a, Langmuir’a 2 oraz Freundlicha. Spośród testowanych sorbentów organicznych, najwyższą pojemność względem Basic Violet 10 wykazały trociny (Qmax= 156,5 mg/g) i kiszonka kukurydziana (Qmax= 180,8 mg/g). W przypadku sorbentów mineralnych, takich jak zeolit czy popioły lotne, maksymalna zdolność sorpcyjna Basic Violet 10 wynosiła odpowiednio Qmax= 144,1 mg/g i 170,1 mg/g.
EN
In this study the effectiveness of sorption Basic Violet 10 were examined (the popular in the industry cationic dye), on 6 different non-conventional sorbents: chitin, sawdust, compost, silage corn, zeolite and fly ash. For each test sorbent was determined optimum pH of sorption. Was also a designated the maximum sorption capacity with respect to the Basic Violet 10. The results obtained were analyzed with the use of three sorption isotherms: Freundlich, Langmuir and double Langmuir. Among the organic sorbents tested, the highest capacity relative to Basic Violet 10 shown sawdust (Qmax = 156.5 mg/g) and corn silage (Qmax = 180.8 mg/g). In the case of mineral sorbents such as zeolite or fly ash, the maximum absorptive capacity Basic Violet 10 was respectively Qmax = 144.1 mg/g and 170.1 mg/g.
Rocznik
Tom
Strony
95--103
Opis fizyczny
Bibliogr. 27 poz., tab., rys.
Twórcy
autor
  • Katedra Inżynierii Środowiska, Uniwersytet Warmińsko-Mazurski w Olsztynie, ul. Warszawska 117a, 10-719 Olsztyn
  • Katedra Inżynierii Środowiska, Uniwersytet Warmińsko-Mazurski w Olsztynie, ul. Warszawska 117a, 10-719 Olsztyn
autor
  • Katedra Inżynierii Środowiska, Uniwersytet Warmińsko-Mazurski w Olsztynie, ul. Warszawska 117a, 10-719 Olsztyn
autor
  • Katedra Inżynierii Środowiska, Uniwersytet Warmińsko-Mazurski w Olsztynie, ul. Warszawska 117a, 10-719 Olsztyn
Bibliografia
  • 1. Al-Rashed S.M., Al-Gaid A.A., 2012. Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye on Duolite C-20 resin. Journal of Saudi Chemical Society, 16, 209–215.
  • 2. Anandkumara J., Mandal B., 2011. Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies. Journal of Hazardous Materials, 186, 1088–1096.
  • 3. Bhatnagar A., Jain A.K., 2005. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. Journal of Colloid and Interface Science, 281, 49–55.
  • 4. Bhattacharyya K.G., SenGupta S., Sarma G.K., 2014. Interactions of the dye, Rhodamine B with kaolinite and montmorillonite in water. Applied Clay Science, 99, 7–17.
  • 5. Filipkowska U., Rodziewicz J., 2009. Effectiveness of dye rb5 adsorption onto chitin and chitosan under static and dynamic conditions. Progress in the Chemistry and Application of Chitin and its Derivatives, XIV, 33–40.
  • 6. Gad H.M., El-Sayed A.A., 2009. Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168, 1070–1081.
  • 7. Guo Y., Zhao J., Zhang H., Yang S., Qi J., Wang Z., Xu H., 2005. Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions. Dyes and Pigments, 66, 123–128.
  • 8. Hou M.F., Ma C.X., Zhang W.D., Tang X.Y., Fan Y.N., Wan H.F., 2011. Removal of rhodamine B using iron-pillared bentonite. Journal of Hazardous Materials, 186, 1118–1123.
  • 9. Jóźwiak T., Filipkowska U., Rodziewicz J., Grabowski P., 2013. Wykorzystanie niekonwencjonalnych sorbentów do usuwania barwników ze ścieków przemysłowych. Instal, 6, 48–51.
  • 10. Ju D.J., Byun I.G., Park J.J., Lee C.H., Ahn G.H., Park T.J., 2008. Biosorption of a reactive dye (Rhodamine-B) from an aqueous solution using dried biomass of activated sludge. Bioresource Technology, 99, 7971–7975.
  • 11. Khan T.A., Dahiya S., Ali I., 2012. Use of kaolinite as adsorbent: Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Applied Clay Science, 69, 58–66.
  • 12. Khattri S.D., Singh M.K., 1999. Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorption Science and Technology, 17, 269–282.
  • 13. Lewis D.M., 1999 Coloration in the next century. Review of Progress in Coloration and Related Topics, 29, 23–28.
  • 14. Li L., Liu S., Zhu T., 2010. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. Journal of Environmental Sciences, 22, 1273–1280.
  • 15. Liang C.Z., Sun S.P., Li F.Y., Ong Y.K., Chung T.S, 2014. Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science, 469, 306–315.
  • 16. Namasivayam C., Muniasamy N., Gayatri K., Rani M., Ranganathan K., 1996. Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresource Technology, 57, 37–43.
  • 17. Namasivayam C., Kumar M.D., Selvi K., Begum R.A., Vanathi T., Yamuna R.T., 2001. ‘Waste’ coir pith—a potential biomass for the treatment of dyeing wastewaters. Biomass and Bioenergy, 21, 477–483.
  • 18. Panda G.C., Das S.K., Guha A.K., 2009. Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution. Journal of Hazardous Materials, 164, 374–379.
  • 19. Peng L., Qin P., Lei M., Zeng Q., Song H., Yang J., Shao J., Liao B., Gu J., 2012. Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. Journal of Hazardous Materials, 209-210, 193–198.
  • 20. Santhi T., Prasad A.L., Manonmani S., 2014. A comparative study of microwave and chemically treated Acacia nilotica leaf as an eco friendly adsorbent for the removal of rhodamine B dye from aqueous solution. Arabian Journal of Chemistry, 7, 494–503.
  • 21. Stephen I.B., Sulochana N., 2006. Use of jackfruit peel carbon (JPC) for adsorption of rhodamine-B, a basic dye from aqueous solution. Indian Journal of Chemical Technology, 13, 17–23.
  • 22. Tan I.A.W., Ahmad A.L., Hameed B.H., 2008. Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination, 225, 13–28.
  • 23. Wang S., Li H., 2005. Dye adsorption on unburned carbon: Kinetics and equilibrium. Journal of Hazardous Materials, 126, 71–77.
  • 24. Wang Y., Mu Y., Zhao Q.B., Yu H.Q., 2006. Isotherms, kinetics and thermodynamics of dye biosorption by anaerobic sludge. Separation and Purification Technology, 50, 1–7.
  • 25. Yu J.X., Li B.H., Sun X.M., Yuan J., Chi R., 2009. Polymer modified biomass of baker‘s yeast for enhancement adsorption of methylene blue, rhodamine B and basic magenta. Journal of Hazardous Materials, 168, 1147–1154.
  • 26. Zamouche M., Hamdaoui O., 2012. A Use of Cedar Cone for the Removal of a Cationic Dye from Aqueous Solutions by Sorption. Energy Procedia, 18, 1047–1058.
  • 27. Zhang J., Gondal M.A., Wei W., Zhang T., Xu Q., Shen K., 2012. Preparation of room temperature ferromagnetic BiFeO3 and its application as an highly efficient magnetic separable adsorbent for removal of Rhodamine B from aqueous solution. Journal of Alloys and Compounds, 530, 107–110.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b8d6b7a-279a-4c7a-bf64-cff9e27290e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.