PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface modified bentonite mineral as a sorbent for Pb2+ and Zn2+ ions removal from aqueous solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Environmental pollution by lead (Pb2+) and zinc (Zn2+) ions has become an important issue due to its harmful effects on human health and environment. This work aims to evaluate the application of surface modified Egyptian bentonite mineral by acid activation using H2SO4 and thermal treatment as an adsorbent to remove lead (Pb2+) and zinc (Zn2+) ions from aqueous solution. X-ray diffraction (XRD), Fourier Transformed Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) techniques were used to investigate the modified bentonite. The impact of organic and inorganic dispersants on rheological characteristics of bentonite suspensions was investigated. Adsorption of Pb2+ and Zn2+ ions using modified bentonite mineral was performed with different adsorbent doses and pH values. Removal efficiencies of lead and zinc are 99.67% and 99%, respectively with adsorbent dose of 25 g/l at pH of 6.2.
Rocznik
Strony
145--157
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr., wz.
Twórcy
  • Mineral Beneficiation and Agglomeration Department, Central Metallurgical Research & Development Institute (CMRDI), P.O. Box 87 Helwan, 11722 Cairo, Egypt
autor
  • Academy of Scientific Research and Technology, ASRT, Cairo, Egypt
  • Mineral Beneficiation and Agglomeration Department, Central Metallurgical Research & Development Institute (CMRDI), P.O. Box 87 Helwan, 11722 Cairo, Egypt
  • Mineral Beneficiation and Agglomeration Department, Central Metallurgical Research & Development Institute (CMRDI), P.O. Box 87 Helwan, 11722 Cairo, Egypt
  • Mineral Beneficiation and Agglomeration Department, Central Metallurgical Research & Development Institute (CMRDI), P.O. Box 87 Helwan, 11722 Cairo, Egypt
  • Mineral Beneficiation and Agglomeration Department, Central Metallurgical Research & Development Institute (CMRDI), P.O. Box 87 Helwan, 11722 Cairo, Egypt
Bibliografia
  • ACHEAMPONG, M.A., MEULEPAS, R.J.W., LENS, P.N.L, 2010. Removal of heavy metals and cyanide from gold mine wastewater, J. Chem. Technol. Biotechnol., 85, 590-613.
  • AGHA, M.A., FERRELL, R.E., HART, G.F., EL GHAR, M.S.A., ABDEL-MOTELIB, A., 2013. Mineralogy of Egyptian Bentonitic Clays II: Geologic Origin. Clays Clay Miner. 61, 551-565.
  • ARIEF, V.O., TRILESTARI, K., SUNARSO, J., INDRASWATI, N., ISMADJI, S., 2008. Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies, Clean Soil Air Water, 36, 937-962.
  • BEN AZOUZ, K., BEKKOUR, K., DUPUIS, D., 2016. Influence of the temperature on the rheological properties of bentonite suspensions in aqueous polymer solutions. Applied Clay Science. 123, 92-98.
  • CAMACHOA, L. M., PARRAB, R. R., DENGA, S., 2011. Arsenic removal from ground water by MnO2-modified natural clinoptilolite zeolite: Effects of pH and initial feed concentration, J. Hazardous Materials, 189, 286-293.
  • CHEREMISINOFF, P.N., 1995. Handbook of Water and Wastewater Treatment Technology, Marcel Dekker Inc., New York.
  • CORUH, S., ERGUN, O.N., 2009. Ni2+ removal from aqueous solutions using conditioned clinoptilolites: kinetic and isotherm studies, Environ. Prog. Sustain. Energy, 28, 162-172.
  • COVELO, E.F., ANDRADE-COUCE, M.L., VEGA, F.A., 2004. Simultaneous adsorption of Cd, Cr, Cu, Ni, Pb and Zn by different soils, Journal of Food Agriculture and Environment 2(3).
  • DIMIRKOU, A., 2007. Uptake of Zn2+ ions by a fully iron exchanged clinoptilolite. Case study of heavily contaminated drinking water samples, Water Res., 41, 2763-2773.
  • DOULA, M.K., DIMIRKOU, A., 2008. Use of an iron-overexchanged clinoptilolite for the removal of Cu2+ ions from heavily contaminated drinking water samples, J. Hazard. Mater., 151, 738-745.
  • EHSSAN, N., 2013. Thermodynamics and Kinetic Study of Using Modified Clay as an Adsorbent for the Removal of Zn ions from waste water. Journal of American Science. 9,141-149.
  • EL-WAKEEL, Sh.T., EL-TAWIL, R.S., ABUZEID, H.A.M., ABDEL-GHANY, A.E., HASHEM, A.M., 2017. Synthesis and structural properties of MnO2 as adsorbent for the removal of lead (Pb2+) from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers. 72, 95-103.
  • ESPOSITO, A., PAGNANELLI, F., VEGIO, F., 2002. pH-related equilibria models for biosorption in single metal systems, Chem. Eng. Sci., 57, 307-313.
  • FENGLIAN, F., WANG, Q., 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. 92, 407-418.
  • HUI, K.S., CHAO, C.Y.H., KOT, S.C. Kot, 2005. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard.Mater., 127, 89-101.
  • KELESSIDIS, V.C., 2017. Yield Stress of Bentonite Dispersions. Rheol: open access. 1, 1-12.
  • KUMAR, P.S., RAMALINGAM, S., SATHYASELVABALA, V., KIRUPHA, S.D., MURUGESAN, A., SIVANESAN, S., 2012. Removal of cadmium (II) from aqueous solution by agricultural waste cashew nut shell. Korean J. Chem. Eng. 29, 756-768.
  • MENG, B., GUO, Q., MEN, X., REN, S., JIN, W., SHEN, B., 2020. Modified bentonite by polyhedral oligomeric silsesquioxane and quaternary ammonium salt and adsorption characteristics for dye. Journal of Saudi Chemical Society. 24, 334-344.
  • MISHRA, P.C., PATEL, R.K., 2009. Removal of lead and zinc ions from water by low cost adsorbents, J. Hazard. Mater., 168, 319-325.
  • MOGHADAMZADEH H.R., NAIMI, M., RAHIMZADEH, H., ARDJIMAND M., NANSA, V.M., GHANADI, A.M., 2013. Experimental Study of Adsorption Properties of Acid and Thermal Treated Bentonite from Tehran (Iran). Intern. J. of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering. 7, 426-429.
  • NAGWA B., MAHMOUD S., 2016. Adsorption Behavior of Cd2+ and Zn2+ onto Natural, Egyptian Bentonite Clay. Minéral. 6, 1-15.
  • NGUYEN, T., NGO, H., GUO, W., ZHANG, J., LIANG, S., YUE, Q., LI, Q., NGUYEN, T., 2013. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour. Technol. 148, 574-585.
  • OREN, A.H., KAYA, A., 2006. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites, J. Hazard. Mater., 131, 59-65.
  • SDIRI, A., HIGASHI, T., HATTA, T., JAMOUSSI, F., TASE, N., 2011. Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chem. Eng. J. 172, 37- 46.
  • SELIM, K.A., EL-TAWEEL, R.S., ABDEL-KHALEK, N.A., 2016. Heavy Metals Removal Using Surface Modified Glauconite Mineral. International Journal of Mineral Processing and Extractive Metallurgy. 1, 46-55.
  • SELIM, K.A., YOUSSEF, M.A., ABDEL RAHIEM, F.H., HASSAN, M.S., 2014. Dye Removal Using Some Surface Modified Silicate Minerals. International Journal of Mining Science and Technology. 24, 183-189.
  • WANG, F., XU, W., XU, Z., LIU, H., 2020. CTMAB-Modified Bentonite-Based PRB in Remediating Cr(VI) Contaminated Groundwater. Water Air Soil Pollut. 231, 20. https://doi.org/10.1007/s11270-019-4386-4.
  • WANG, M., WANG, Z., ZHOU, X., LI, S., 2019. Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel. Appl. Sci. 9, 547. doi:10.3390/app9030547.
  • WU, D., SUI, Y., HE, S., WANG, X., LI, C., KONG, H., 2008. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash, J. Hazard. Mater., 155, 415-423.
  • YEHIA, A., ABD EL-RAHIEM, F.H., EL-TAWEEL, R.S., 2008. Removal of heavy metals from aqueous solutions by unburned carbon separated from blast furnace flue dust. Mineral Processing and Extractive Metallurgy (Trans. Inst. Min Metall. C). 117, 4.
  • YEON, C.K., BAI, K., 2015. Effects of bentonite concentration and solution pH on the rheological. Applied Clay Science. 108, 182-190.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b84a83b-16bd-4d0b-9b39-d4c5f612a682
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.