PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of mineral additives and sands on the performance of self-compacting sand concretes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The chosen plan for our case study is a network mixture design consisting of 21 mixtures. The application of this method has proven to be immensely useful in studying the influence of composition parameters (composite design) and the utilization of various types of mineral additives (mixture design). The application of the Design of Experiments (DOE) method, based on a statistical approach, allowed for a better understanding of the effect of formulation parameters, including the proportion of alluvial sand (75%), dune sand (25%), the total amount of sand kept at constant percentages, the dosages of brick powder, limestone filler and ceramic powder (all varying from 0 %, 20 %, 40 %, 60 %, 80 %, and 100 %), while keeping the dosage of superplasticizer and the water/binder ratio constant. This approach helped to understand the interactions between these parameters and their impact on the process. Mathematical models relating the variations of these parameters to the workability and compressive strength of such concrete mixtures have been established. The results obtained show that the workability of SCSC (expressed by slump flow and V-funnel flow) improves with the increase in the dosage of limestone filler (FC), brick powder (PB), and ceramic powder (PC), with element having a different impact, be it alone or in a combination. Moreover, they all improved the behavior of SCSC in both the fresh and hardened states. The experiment shows that increasing the proportions of FC and PC in the mixture, whether linear, binary, or ternary, leads to a significant improvement in compressive strength. Furthermore, better strength is observed in the ternary mixture at 28 days, with a strength of 43 MPa, with the following proportions (FC 70%, PB 20%, PC 10%). Finally, the result at 180 days of 48 MPa confirms the following proportions (PC 60 %, FC 30 %, PB 10 %) The compliance of some SCSC compositions was tested according to the recommendations of the French Association of Civil Engineering.
Rocznik
Strony
104--126
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Mechanical and Materials Development Laboratory, University of Djelfa, 17000, Algeria
  • Civil Engineering Department, National Polytechnic School of Algiers, Algeria
  • Department of Civil Engineering, University Ziane Achour, 17000, Djelfa, Algeria
  • Structures Rehabilitation and Materials Laboratory, University of Laghouat, 3000, Algeria
autor
  • Department of Civil Engineering, University Ziane Achour, 17000, Djelfa, Algeria
Bibliografia
  • 1. Nehdi M., Rahman M.: Why some arbonate fillers cause rapid increases of viscosity in dispersed cement-based materials. Cement and Concrete Research, 30 (2000) 1663-1669.
  • 2. El Barak M.: Contribution à l’étude de l’aptitude à l’écoulement des BAP à l’état frais, thèse de doctorat, Université Toulouse III, 2005.
  • 3. Billberg P.: Fine mortar rheology in mix design of SCC. Proceedings of 1st inter Rilem Conference on SCC, Cachan cedex, (1999) 47-58.
  • 4. Zhang X., Han J.: The effect of ultra-fine admixture on the rheological property of cement paste. Cement and Concrete Research, 30 (2000) 827-830.
  • 5. Alsanusi S.: Influence of silica fume of self compacting concrete. International Journal of Civil and Envirenment al Engineering, (2013) 7.07.
  • 6. Mohammadi Y., Sajjad Mousavi S.: The effect of silica fume on the properties of self compacted lightweight Concrete. Current World Environment, 10 ( 2015) 381-388.
  • 7. Akhtar P., Paliwal M.C., Singh V.K.: Experimental Investigation and Cost Analysis of Self Compacting Concrete by using Red Mud. International Journal of Engineering Development and Research, 5 (2017) 3.
  • 8. Arivalagan S.: Experimental Analysis of Self Compacting Concrete Incorporating Different Range of High Volumes of Class F Fly Ash. Scholars Journal of Enginering and Technology, 3 (2013) 104-111.
  • 9. Shah U.N., Modheda C.D.: Study on fresh of self compacting concrete with process fly ash. International Journal of Research in Engineering et Technology, 2 ( 2014) 2321-8843.
  • 10. Jalal M., Pouladkhan A.: Comparative study on effects of class F fly ash , nano silica and silica fume on properties of high performance self compacting concrete. Construction and Building Materials, 94 (2015) 90-104.
  • 11. Boel V., Audenaert K., De Schutter G., Heirman G., Vandewalle L., Desmet B., Vantomme J.: Transport properties of self compacting concrete with limestone filler or fly ash. Materials and Structures , 40 (2007) 507–516.
  • 12. Chaid R., Jauberthie R., Zeghiche J.: Impact de la poudre de marbre conjuguée au calcaire du CEMII sur la durabilité du béton. European Journal of Environmental and Civil Engineering, 15 (2011) 427-445.
  • 13. Kumar A. D.: Feasibility of waste marble powder in concrete as partial substitution of cement and sand amalgam for sustainable growth. Journal of Building Engineering, 15 (2018) 236-242.
  • 14. Cagin U. G., Bilir T., Artir R.: Durability Properties of Concrete Produced by Marble Waste as Aggregate or Mineral Additives. Procedia Engineering, 161 ( 2016 ) 543 – 548.
  • 15. Ricardo P., Roberto P. Jr L., Lima A.E, Pelisser F., Jean Paul G.P.: Use of porcelain polishing residue as a supplementary cimentitious material in self-compacting concrete. Construction and Building Materials, 193 (2018) 623–630.
  • 16. Lavanya G., Karuppasamy R.: Experimental study on concrete using glass powder and granite powder. International Journal of Advanced Engineering Research and Technology, 4 (2016) 97-101.
  • 17. Kim S., Choi S., Yang E.: Evaluation of durability of concrete substituted heavyweight waste glass as fine aggregate. Construction and Building Materials, 184 (2018) 269–277.
  • 18. Senthamarai, R.M., Manoharan P.D: Concrete with ceramic waste aggregate. Cement and Concrete Composites, 27.9-10 (2005) 910-913.
  • 19. Gonzalez-Corominas A., Etxeberria M.: Properties of high performance concrete made with recycled fine ceramic and coarse mixed aggregates. Construction and Building Materials, 68 (2014) 618-626.
  • 20. El-Dieb, A.S., Kanaan, D.M.: Ceramic waste powder an alternative cement replacement–characterization and evaluation. Sustainable Materials Technologies, 17 (2018) e00063.
  • 21. Subaşı, S., Öztürk H., Emiroğlu M.: Utilizing of waste ceramic powders as filler material in selfconsolidating concrete. Construction and Building Materials, 149 (2018) 567-574.
  • 22. Kannan, D.M., Aboubakr A.H., EL-Dieb A.S., Taha M.M.R.: High performance concrete incorporating ceramic waste powder as large partialreplacement of Portland cement. Construction and Building Materials, 144 (2017) 35-41.
  • 23. Lasseuguette E., Burns, S., Simmons D., Francis, E., Huang Y.: Chemical, microstructural and mechanical properties of ceramic waste blended cementitious systems. Cleaner Production, 211 (2019) 1228-1238.
  • 24. Khayat K. H., Ghezal A., Hadriche M. S.: Factorial design model for proportioning self-consolidating concrete. Materials and Structures, 32 (1999) 679-686.
  • 25. Sonebi M., Svermova L., Bartos PJM.: Statistical modelling of cement slurries for self-compacting SIFCON containing silica fume. Materials and Structures, 38 (2005) 79-86.
  • 26. Yahia A., Khayat K.H.: Experiment design to evaluate interaction of high-range water-reducer and antiwashout admixture in high-performance cement grout. Cement Concrete Research, 31.5 (2001) 749–57.
  • 27. Bayramov F., Taşdemir C., Taşdemir M. A.: Optimisation of steel fibre reinforced concretes by means of statistical response surface method. Cement Concrete Composites, 26.6 (2004) 665–675.
  • 28. Bouziani T.: Formulation d’un béton de sable autoplaçant: rôle de la granularité et de dosages des constituants sur le comportement rhéologique, PhD thesis, Université M’Hamed Bougara de Boumerdès, 2012.
  • 29. Bouziani, T.: Assessment of fresh properties and compressive strength of self-compacting concrete made with different sand types by mixture design modelling approach. Construction and Building Materials, 49 (2013) 308-314.
  • 30. Goupy J., Creighton L.: Introduction to design of experiments with JMP examples, 3rd ed. Cary, NC SAS Institute, (2018) 11-240.
  • 31. R’mili, A., Ben Ouezdou B.: Incorporation du sable de concassage et du sable du désert dans la composition des bétons autoplaçants, Séminaire international, Innovation et Valorisation en Génie Civil et Matériaux de Construction, 81 (2009) 10: 271.
  • 32. EFNARC S.: Guidelines for Self-Compacting Concrete, European Federation for Specialist Construction Chemicals and Concrete Systems, Norfolk, UK, English ed, February, 2002.
  • 33. Leila Z., Azzeddine Z. B.: Contribution à l’étude des caractéristiques du sable de dune et de son effet sur le comportement des bétons autoplaçants, ACMA. 9-12 May 2012.
  • 34. Belferrag A.: Contribution à l'amélioration des propriéts mécaniques et rhéologiques des bétons de sable de dunes, PhD thesis, Biskra Algérie: s.n., (2016) 125-526.
  • 35. Ghrieb A., Abadou Y.: Physical and Mechanical Properties of Dune Sand Mortar Reinforced with Recycled Pet Fiber: An Experimental Study. Advances in Materials Science, 24.1 (2022) 41-56.
  • 36. Aboubakeur B., Abderramane H., Belkacem S.: Some engineering properties of sustainable self-compacting mortar made with ceramic and glass powders. Építőanyag: Journal of Silicate Based & Composite Materials, 74.1 (2022).
  • 37. Saad C., Lakhdar A., Benchaa B.: Use of recycled aggregates from different sources in the production of SCC Part I: Mix design and fresh properties, Építöanyag (Online) , 6, (2022): 210-217.
  • 38. Taha-Honice D., Guettala S.: Effets de divers types de sables sur les propriétés d'un béton autoplaçant. Journée nationale du béton (JNB), Troisième conférence du génie civil et de la planification urbaine, 2017.
  • 39. Benabed B.: Influence de la qualité et de la nature des sables sur les performances et la durabilité des bétons autoplaçants, PhD thesis, Université de Laghouat-Amar Telidji, 2014.
  • 40. Domone P.L., Jin J., Chai WH.: Optimum mix proportioning of self-compacting concrete. Innovation in Concrete Structures: Design and Construction, Thomas Telford Publishing, (1999) 277-285.
  • 41. Domone P., Jin J.: Properties of mortar for self-compacting concrete. Self-compacting concrete, Stockholm, 13-14 September 1999.
  • 42. Mucteba U., Yurdakul A.O.: Investigation of using waste marble powder, brick powder, ceramic powder, glass powder, and rice husk ash as eco-friendly aggregate in sustainable red mud-metakaolin based geopolymer composites. Construction and Building Materials, 361 (2022) 29718.
  • 43. Aboubakeur B., Benchaa B.: Fresh and hardened properties of self-compacting repair mortar made with a new reduced carbon blended cement. Journal of Silicate Based & Composite Materials, 71.4 ,(2019).
  • 44. Aïssoun B. M., Soo-Duck H., Kamal H.Kh.: Influence of aggregate characteristics on workability of superworkable concrete. Materials and Structures ,49 (2016) 597-609.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b834303-4274-4ace-b824-e0c4640fdbe6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.