Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research introduces a novel technique for non-contact vibration measurement: the laser speckle stroboscope. Non-contact vibration measurement always yields superior results compared to contact methods as it does not impose any sensor load on the system, making it crucial for sensitive systems. Non-contact measurement techniques are also employed to assess vibrations in extreme temperatures and chemical environments where conventional sensors are prone to damage. This system, built with a laser, lenses, and a photodiode, offers significant improvements in precision compared to traditional stroboscopes. Conventional stroboscopes struggle to accurately measure linear vibrations, while high-precision alternatives like Laser Doppler Vibrometers (LDVs), are expensive. This study attempts to address the limitations associated with laser vibrometers. The laser speckle stroboscope addresses these limitations with a compact and cost-effective design. The system works by creating a laser-generated speckle pattern on the vibrating surface. The pattern is then sampled using a stroboscopic method in which the sampling period is synchronized with the vibration frequency. Rigorous testing confirmed the system’s effectiveness. The focused laser beam precisely captured the rotational movements. For linear vibrations, the system detected deviations as low as 3 Hz for specific frequencies. The rotational measurements showed a maximum deviation of 2 Hz for two out of four tested speeds. These results were validated using an external laser vibrometer, proving the system’s reliability.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
767--779
Opis fizyczny
Bibliogr. 27 poz., fot., rys., wykr., wzory
Twórcy
autor
- Necmettin Erbakan University, Department of Mechatronic Engineering, Koycegiz, Meram, Turkey
Bibliografia
- [1] Hajnayeb, A., Shirazi, K. H., & Aghaamiri, R. (2020). Vibration measurement for crack and rub detection in rotors. Metrology and Measurement Systems, 65-80. https://doi.org/10.24425/mms.2020.131719
- [2] Olejnik, A., Rogólski, R., & Szcześniak, M. (2021, June). Contact and non-contact methods of vibration measurement in aircraft structures. In 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (pp. 619-624). IEEE.
- [3] Lezhin, D. S., Falaleev, S. V., Safin, A. I., Ulanov, A. M., & Vergnano, D. (2017). Comparison of different methods of non-contact vibration measurement. Procedia Engineering, 176, 175-183. https://doi.org/10.1016/j.proeng.2017.02.286
- [4] Dobosz, M. (2012). Laser diode distance measuring interferometer-metrological properties. Metrology and Measurement Systems, 19(3), 553-564. https://doi.org/10.2478/v10178-012-0048-1
- [5] Johnson, S.J., Lualdi, C.P., Conrad, A.P., Arnold, N.T., Vayninger, M., & Kwiat, P.G. (2023, March). Toward vibration measurement via frequency-entangled two-photon interferometry. In Quantum Sensing, Imaging, and Precision Metrology (Vol. 12447, pp. 268-273). SPIE. https://doi.org/10.1117/12.2650820
- [6] Perrone, G., & Vallan, A. (2008). A low-cost optical sensor for noncontact vibration measurements. IEEE Transactions on Instrumentation and Measurement, 58(5), 1650-1656. https://doi.org/10.1109/TIM.2008.2009144
- [7] Rothberg, S. J., Allen, M. S., Castellini, P., Di Maio, D., Dirckx, J. J. J., Ewins, D. J., ... & Vignola, J.F. (2017). An international review of laser Doppler vibrometry: Making light work of vibration measurement. Optics and Lasers in Engineering, 99, 11-22. https://doi.org/10.1016/j.optlaseng.2016.10.023
- [8] Yeh, Y., & Cummins, H. Z. (1964). Localized fluid flow measurements with an He-Ne laser spectrometer. Applied Physics Letters, 4(10), 176-178. https://doi.org/10.1063/1.1753925
- [9] Dainty, J. C. (Ed.). (2013). Laser Speckle and Related Phenomena (Vol. 9). Springer Science & Business Media.
- [10] McDevitt, T. E., & Vikram, C. S. (1997). An investigation of pseudovibration signals in dual beam laser vibrometry. Review of Scientific Instruments, 68(4), 1753-1755. https://doi.org/10.1063/1.1147986
- [11] Vass, J., Šmíd, R., Randall, R. B., Sovka, P., Cristalli, C., & Torcianti, B. (2008). Avoidance of speckle noise in laser vibrometry by the use of kurtosis ratio: Application to mechanical fault diagnostics. Mechanical Systems and Signal Processing, 22(3), 647-671. https://doi.org/10.1016/j.ymssp.2007.08.008
- [12] Edgerton, H. E., Hauser, E. A., & Tucker, W. B. (1937). Studies in drop formation as revealed by the high-speed motion camera. Journal of Physical Chemistry, 41(7), 1017-1028. https://doi.org/10.1021/j150385a012
- [13] Steinforth, A. W., Rivera, J. A., & Eden, J. G. (2022). Imaging of transient phenomena with low coherence lasers comprising arrays of independent microbeams: A laser version of Harold Edgerton’s stroboscope. APL Photonics, 7(1). https://doi.org/10.1063/5.0076899
- [14] Verpillat, F., Joud, F., Atlan, M., & Gross, M. (2012). Imaging velocities of a vibrating object by stroboscopic sideband holography. Optics Express, 20(20), 22860-22871. https://doi.org/10.1364/OE.20.022860
- [15] Stipčević, M., Demoli, N., Skenderović, H., Lončarić, M., Radman, A., Gladić, J., & Lovrić, D. (2017). Effective procedure for determination of unknown vibration frequency and phase using time-averaged digital holography. Optics Express, 25(9), 10241-10254. https://doi.org/10.1364/OE.25.010241
- [16] Roy, D., Misra, P., Chakravarty, T., Sinharay, A., Rakshit, R., & Pal, A. (2019). A novel unobtrusive vibration sensing system for machine inspection. Modern Sensing Technologies, 349-365. https://doi.org/10.1007/978-3-319-99540-3_18
- [17] Amjad, M. S., & Dressler, F. (2020, June). Integrated communications and non-invasive vibrations sensing using strobing light. In ICC 2020-2020 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE. https://doi.org/10.1109/ICC40277.2020.9148637
- [18] Ribeiro, I.L.F., Carvalho, G.L., Dib, L.F.G., Barbosa, E.A., & Wetter, N.U. (2023). Vibration amplitude mapping by stroboscopic structured light projection. Optics Communications, 531, 129219. https://doi.org/10.1016/j.optcom.2022.129219
- [19] Yang, L., & Colbourne, P. (2003). Digital laser microinterferometer and its applications. Optical Engineering, 42(5), 1417-1426. https://doi.org/10.1117/1.1564103
- [20] Yang, L. X., Schuth, M., Thomas, D., Wang, Y. H., & Voesing, F. (2009). Stroboscopic digital speckle pattern interferometry for vibration analysis of microsystem. Optics and Lasers in Engineering, 47(2), 252-258. https://doi.org/10.1016/j.optlaseng.2008.04.025
- [21] Spagnolo, G. S., & Leccese, F. (2023, June). Local Correlation Degree of Laser Speckle for Vibration Analysis. In 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (pp. 655-660). IEEE. https://doi.org/10.1109/MetroAeroSpace57412.2023.10190005
- [22] Hart, M. R., Conant, R. A., Lau, K. Y., & Muller, R. S. (2000). Stroboscopic interferometer system for dynamic MEMS characterization. Journal of Microelectromechanical Systems, 9(4), 409-418. https://doi.org/10.1109/84.896761
- [23] Bystrov, A., & Gashinova, M. (2013). Analysis of stroboscopic signal sampling for radar target detectors and range finders. IET Radar, Sonar & Navigation, 7(4), 451-458. https://doi.org/10.1049/iet-rsn.2012.0272
- [24] Howard, D. D. (1975). High range-resolution monopulse tracking radar. IEEE Transactions on Aerospace and Electronic Systems, AES-1(5), 749-755. https://doi.org/10.1109/TAES.1975.307984
- [25] Bystrov, A. N. Djigan, V., & Gashinova, M. (2014). Analysis of non-linear properties of digital radar range finders using statistical linearisation method. IET Radar, Sonar & Navigation, 8(9), 1127-1134. https://doi.org/10.1049/iet-rsn.2013.0360.
- [26] Sjödahl, M., & Benckert, L.R. (1994). Systematic and random errors in electronic speckle photography. Applied Optics, 33(31), 7461-7471. https://doi.org/10.1364/AO.33.007461
- [27] Zdunek, A., Muravsky, L. I., Frankevych, L., & Konstankiewicz, K. (2007). New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life. International Agrophysics, 21(3), 305-310.
Uwagi
This study was supported within the scope of the Scientific Research Projects Coordination Office of Necmettin Erbakan University, under project no. 23GAP19011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b80ed39-a01b-4dfd-86a8-32559eaef225
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.