PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Turbulence statistics and distribution of turbulent eddies for jet flow and rigid surface interaction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The behavior of turbulent eddies within the self-similar region of a rigid surface interacting round jet is experimentally investigated. Results show that the turbulent jet flow structure is significantly affected due to the rigid surface interaction; particularly within the lower portion of the jet shear layer. It is observed that the jet and rigid surface interactions rather enhance the scale of axial velocity fluctuations within the intermediate region of the jet. An additional mixing layer is observed in the lower shear layer region close to the rigid surface due to the production of eddies from the rigid surface. The depth of penetration of the fluctuating eddies decreases significantly at the mixing layer region and this mixing layer acts like a shield which restricts the downward propagation of fluctuating eddies from the plane of symmetry of the jet. The results suggest that the region below the mixing layer can be treated as the shear less mixing region. The interesting consequence of this is that the rate of production of vorticity is enhanced below the mixing layer close to the rigid surface. Also, the enstrophy destruction is favored over enstrophy production at the upper portion of the mixing layer, and exactly the opposite phenomenon is observed in the lower portion of the mixing layer.
Rocznik
Strony
55--88
Opis fizyczny
Bibliogr. 48 poz., rys. kolor.
Twórcy
autor
  • Fluid Mechanics and Hydraulic Laboratory (FMHL) Department of Aerospace Engineering and Applied Mechanics Indian Institute of Engineering Science and Technology (IIEST) Shibpur 711103, India
autor
  • Fluid Mechanics and Hydraulic Laboratory (FMHL) Department of Aerospace Engineering and Applied Mechanics Indian Institute of Engineering Science and Technology (IIEST) Shibpur 711103, India
  • Fluid Mechanics and Hydraulic Laboratory (FMHL) Department of Aerospace Engineering and Applied Mechanics Indian Institute of Engineering Science and Technology (IIEST) Shibpur 711103, India
Bibliografia
  • 1. J. Mi, P. Kalt, G.J. Nathan, C.Y. Wong, PIV measurements of a turbulent jet issuing from round sharp-edged plate, Experiments in Fluids, 42, 4, 625–637, 2007.
  • 2. C.G. Ball, H. Fellouah, A. Pollard, The flow field in turbulent round free jets, Progress in Aerospace Sciences, 50, 1–26, 2012.
  • 3. H.J. Hussein, S.P. Capp, W.K. George, Velocity measurements in a high-Reynolds number, momentum-conserving, axisymmetric, turbulent jet, Journal of Fluid Mechanics, 258, 31–75, 1994.
  • 4. P.C. Chatwin, C.M. Allen, Mathematical models of dispersion in rivers and estuaries, Annual Review of Fluid Mechanics, 17, 1, 119–149, 1985.
  • 5. A.J. Basu, R. Narasimha, Direct numerical simulation of turbulent flows with cloud-like off-source heating, Journal of Fluid Mechanics, 385, 199–228, 1999.
  • 6. A. Agrawal, B.J. Boersma, A.K. Prasad, Direct numerical simulation of a turbulent axisymmetric jet with buoyancy induced acceleration, Flow Turbulence and Combustion, 73, 3, 277–305, 2005.
  • 7. I. Wygnanski, H. Fiedler, Some measurements in the self-preserving jet, Journal of Fluid Mechanics, 38, 3, 577–612, 1969.
  • 8. D.M. Chase, Noise radiated from an edge in turbulent flow, AIAA Journal, 13, 8, 1041–1047, 1975.
  • 9. R.W. Head, M.J. Fisher, Jet/surface interaction noise-Analysis of farfield low frequency augmentations of jet noise due to the presence of a solid shield, Third Areoacustics Conference, 1976.
  • 10. J.L.T. Lawrence, M. Azarpeyvand, R.H. Self, Interaction between a flat plate and a circular subsonic jet, AIAA Journal, 2745, 2011.
  • 11. C.A. Brown, Jet-surface interaction test: far-field noise results, Journal of Engineering for Gas Turbines and Power, 135, 7, 071201–071201, 2013.
  • 12. K.B.M.Q. Zaman, C.A. Brown, J.A. Bridges, Interaction of a rectangular jet with a flat-plate placed parallel to the flow, AIAA/CEAS Aeroacoustics Conference, E-18684, 2013–2184, 2013.
  • 13. H. Wang, S. Lee, Y.A. Hassan, A.E. Ruggles, Laser-Doppler measurements of the turbulent mixing of two rectangular water jets impinging on a stationary pool, International Journal of Heat and Mass Transfer, 92, 206–227, 2016.
  • 14. J. Morlet, Sampling theory and wave propagation, Issues in Acoustic signal/Image Processing and Recognition, 1, 233–261, 1983.
  • 15. J. Niu, B. Sivakumar, Scale-dependent synthetic streamflow generation using a continuous wavelet transform, Journal of Hydrology, 496, 71–78, 2013.
  • 16. V. Sehgal, M.K. Tiwari, C. Chatterjee, Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models,Water Resources Management, 28, 6, 1733–1749, 2014.
  • 17. V. Sehgal, M.K. Tiwari, C. Chatterjee, Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting, Water Resources Management, 28, 10, 2793–2811, 2014.
  • 18. A. Panizzo, G. Bellotti, P. De Girolamo, Application of wavelet transform analysis to landslide generated waves, Coastal Engineering, 44, 4, 321–338, 2002.
  • 19. S. Roy, K. Debnath, B.S. Mazumder, Distribution of eddy scales for wave current combined flow, Applied Ocean Research, 63, 170–183, 2017.
  • 20. S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2001.
  • 21. N. Rajaratnam, Turbulent Jets, Vol. 5, Elsevier, Amsterdam, 1976.
  • 22. W.K. George, The self-preservation of turbulent flows and its relation to initial conditions and coherent structures, Advances in Turbulence, 3973, 1989.
  • 23. N.R. Panchapakesan, J.L. Lumley, Turbulence measurements in axisymmetric jets of air and helium, Part 1. Air jet, Journal of Fluid Mechanics, 246, 197–223, 1993.
  • 24. S.J. Kwon, I.W. Seo, Reynolds number effects on the behavior of a non-buoyant round jet, Experiments in Fluids, 38, 6, 801–812, 2005.
  • 25. A.A. Sonin, Equation of Motion for Viscous Fluids, Massachusetts Institute of Technology, Massachusetts, 2001.
  • 26. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, Vol. II : Mechanics of Turbulence, Courier Corporation, Massachusetts, 2013.
  • 27. J.Y. Park, M.K. Chung, An analytical model of velocity-derivative skewness of rotating homogeneous turbulence, Fluid Dynamics Research, 26, 5, 281–288, 2000.
  • 28. D. Tordella, M. Iovieno, P.R. Bailey, Sufficient condition for Gaussian departure in turbulence, Physical Review E, 77, 1, 016309–016309, 2008.
  • 29. D. Tordella, M. Iovieno, Small-scale anisotropy in turbulent shearless mixing, Physical Review Letters, 107, 19, 194501–194501, 2011.
  • 30. B. Gilbert, Diffusion mixing in grid turbulence without mean shear, Journal of Fluid Mechanics, 100, 2, 349–365, 1980.
  • 31. G.I. Taylor, Production and dissipation of vorticity in a turbulent fluid, Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 15–23, 1938.
  • 32. H. Li, T. Nozaki, Wavelet analysis for the plane turbulent jet: analysis of large eddy structure, JSME International Journal Series B, Fluids and Thermal Engineering, 38, 4, 525–531, 1995.
  • 33. C.D. Winant, F.K. Browand, Vortex pairing: the mechanism of turbulent mixing- layer growth at moderate Reynolds number, Journal of Fluid Mechanics, 63, 2, 237–255, 1974.
  • 34. K.B. Zaman, A.K. Hussain, Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response, Journal of Fluid Mechanics, 101, 3, 449–491, 1980.
  • 35. B.E. Launder, W. Rodi, The turbulent wall jet measurements and modeling, Annual Review of Fluid Mechanics, 15, 1, 429–459, 1983.
  • 36. A. Di Marco, M. Mancinelli, R. Camussi, Pressure and velocity measurements of an incompressible moderate Reynolds number jet interacting with a tangential flat plate, Journal of Fluid Mechanics, 770, 247–272, 2015.
  • 37. O. De Almeida, A.R. Proença, R.H. Self, Experimental characterization of velocity and acoustic fields of single-stream subsonic jets, Applied Acoustics, 127, 194–206, 2017.
  • 38. I. Reba, Applications of the Coanda effect, Scientific American, 214, 6, 84–93, 1966.
  • 39. M. Farge, Wavelet transforms and their applications to turbulence, Annual Review of Fluid Mechanics, 24, 395–457, 1992.
  • 40. M. Farge, Wavelet analysis of coherent structures in two-dimensional turbulent flows, Physics of Fluids A: Fluid Dynamics (1989–1993), 3, 9, 2029, 1991
  • 41. D. Jr. Pandres, Derivation of admissibility conditions for wave functions from general quantum-mechanical principles, Journal of Mathematical Physics, 3, 305, 1962.
  • 42. R. Camussi, G. Guj, Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures, Journal of Fluid Mechanics, 348, 177–199, 1997.
  • 43. R. Camussi, G. Guj, Experimental analysis of intermittent coherent structures in the near field of a high Re turbulent jet flow, Physics of Fluids, 11, 2, 423–431, 1999.
  • 44. S. Grizzi, R. Camussi, Wavelet analysis of near-field pressure fluctuations generated by a subsonic jet, Journal of Fluid Mechanics, 698, 93–124, 2012.
  • 45. C.M. García, M. Cantero, Y. Niño, M.H. García, Turbulence measurements with acoustic Doppler velocimeters, Journal of Hydraulic Engineering, 131, 12, 1062–1073, 2005.
  • 46. C.M. García, P. Jackson, M.H. García, Confidence intervals in the determination of turbulence parameter, Experiments in Fluids, 40, 4, 514–522, 2006.
  • 47. D. Politis, H. White, Automatic block-length selection for the dependant bootstrap, Econometric Reviews, 23, 53–70, 2004.
  • 48. G. Consolini, P.D.E. Michelis, Local intermittency measure analysis of AE index: The directly driven and unloading component, Geophysical Research Letters, 32, 5, 2005.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b79df8b-5a1c-4ca3-adfb-95a6934b9b55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.