PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Sodium Penetration on Microscopic Deformation of Carbon-Based Cathode Materials During Aluminum Electrolysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the macroscopic and microscopic deformation caused by sodium penetration in the carbon cathode has been studied during aluminum electrolysis. The distributions of sodium concentration in the carbon cathode has been measured by SEM-EDS. The microstructure change caused by the gradient of the sodium concentration in the carbon cathode has been studied using transmission electron microscopy (TEM). The results indicate that sodium penetration decreases with the increase of the penetration depth. The stresses caused by the gradient of the sodium concentration result in a remarkable change for the microstructure of the carbon cathode. The formation of dislocations resulting in dislocation arrays and the development of kink band networks bring about material damage growth and possibly subsequent weakening of the cathode. These results can provide useful information that is helpful in developing an improved comprehending of the microscopic deformation mechanism of the carbon cathode during aluminum electrolysis.
Twórcy
autor
  • Henan University of Science and Technology, College of Materials Science and Engineering, Luoyang 471023, China
  • Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023, China
  • Henan Key Laboratory of Non-ferrous Materials Science & Processing Technology, Luoyang 471023, China
  • Henan University of Science and Technology, Engineering Training Center, Luoyang 471023, China
autor
  • Henan University of Science and Technology, College of Materials Science and Engineering, Luoyang 471023, China
  • Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023, China
  • Henan Key Laboratory of Non-ferrous Materials Science & Processing Technology, Luoyang 471023, China
autor
  • Henan University of Science and Technology, College of Materials Science and Engineering, Luoyang 471023, China
  • Collaborative Innovation Center of Nonferrous Metals Henan Province, Luoyang 471023, China
  • Henan Key Laboratory of Non-ferrous Materials Science & Processing Technology, Luoyang 471023, China
autor
  • Luoyang Ship Material Research Institute, Luoyang 471023, China
Bibliografia
  • [1] L. Chauke, A.M. Garbers-Craig, Carbon 58, 40-45 (2013).
  • [2] X. Lv, C. Guan, Z. Han, C. Chen, Journal of Molecular Liquids 298, 112017 (2020).
  • [3] C. Ban, S. Zhu, X. Tao, W. Chen, Journal of Materials Science-Materials in Electronic 27, 12074-12078 (2016).
  • [4] L.P. Lossius, H.A. Øye, Metallurgical & Materials Transactions B 31, 1213-1224 (2000).
  • [5] A. Zolochevsky, J.G. Hop, G. Servant, T. Foosnæs, H.A. Øye, Carbon 41, 497-505 (2003).
  • [6] P.Y. Brisson, H. Darmstadt, M. Fafard, A. Adnot, G. Servant, G. Soucy, Carbon 44, 1438-1447 (2006).
  • [7] P.Y. Brisson, M. Fafard, G. Soucy, Canadian Metallurgical Quarterly 45, 417-426 (2006).
  • [8] K. Tschope, C. Schoning, J. Rutlin, T. Grande, Metallurgical & Materials Transactions B 43, 290-301 (2012).
  • [9] Picard, Fafard, Soucy, Bilodeau, JF, Materials Science & Engineering A 496, 366-375 (2008).
  • [10] J.A. Hinks, G. Greaves, S.J. Haigh, C.-T. Pan, S.E. Donnelly, Materials Transactions 55, 447-450 (2014).
  • [11] J.A. Hinks, S.J. Haigh, G. Greaves, F. Sweeney, C.T. Pan, R.J. Young, S.E. Donnelly, Carbon 68, 273-284 (2014).
  • [12] W. Chao, C. Zhang, S. Chen, Carbon 109, 666-672 (2016).
  • [13] J. Gruber, A.C. Lang, J. Griggs, M.L. Taheri, G.J. Tucker, M.W. Barsoum, Scientific Reports 6, 33451 (2016).
  • [14] W. Wang, W. Chen, H. Liu, C. Zhang, Diamond and Related Materials 95, 14-19 (2019).
  • [15] W. Wang, K. Sun, H. Liu, Construction and Building Materials 241, 118119 (2020).
  • [16] E. Hjertenæs, A.Q. Nguyen, H. Koch, Physical Chemistry Chemical Physics 18, 31431-31440 (2016).
  • [17] M. Anji Reddy, M. Helen, A. Groß, M. Fichtner, H. Euchner, ACS Energy Letters 3, 2851-2857 (2018).
  • [18] W. Wang, K. Sun, Applied Sciences 10, 2228 (2020).
  • [19] C. Kamal, A. Chakrabarti, A. Banerjee, S.K. Deb, Physica E: Low-Dimensional Systems and Nanostructures 54, 273-280 (2013).
  • [20] C. Xia, S. Watcharinyanon, A.A. Zakharov, L.I. Johansson, R. Yakimova, C. Virojanadara, Surface Science 613, 88-94 (2013).
  • [21] R. Krishna, A.N. Jones, L. Mcdermott, B.J. Marsden, Journal of Nuclear Materials 467, 557-565 (2015).
  • [22] B. Lei, L. He, M. Yi, L. Ran, H. Xu, Y. Ge, K. Peng, Carbon 49, 4554-4562 (2011).
  • [23] W. Wang, W. Chen, W. Gu, Materials Science & Engineering A 687, 107-112 (2017).
  • [24] J.-F. Wen, S.-T. Tu, X.-L. Gao, J.N. Reddy, Materials Science & Technology 30, 32-37 (2014).
  • [25] Y. Nakamura, K. Oohashi, T. Toyoshima, M. Satish-Kumar, J. Akai, Journal of Structural Geology 72, 142-161 (2015).
  • [26] Q.Y. Lin, T.Q. Li, Z.J. Liu, Y. Song, L.L. He, Z.J. Hu, Q.G. Guo, H.Q. Ye, Carbon 50, 2369-2371 (2012).
  • [27] V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, P.R. Guduru, Journal of Power Sources 195, 5062-5066 (2011).
  • [28] B. Wang, D.E. Wolfe, M. Terrones, M.A. Haque, S. Ganguly, A.K. Roy, Carbon 117, 201-207 (2017).
  • [29] M. Liu, G. Wang, P. Xu, Y. Zhu, W. Li, Applied Sciences 10, 3238 (2020).
  • [30] Y. Liu, H. Wang, K. Yang, Y. Yang, J. Ma, K. Pan, G. Wang, F. Ren, H. Pang, Applied Sciences 9, 2677 (2019).
Uwagi
1. The support from National Natural Science Foundation of China (NSFC) [grant number U1704154] was gratefully acknowledged.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b76c817-e4c7-4e3c-a741-45680a095764
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.