PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial Intelligence and Environmental Protection of Buildings

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Sztuczna inteligencja i ochrona środowiska budynków
Języki publikacji
EN
Abstrakty
EN
Global environmental pollution has an extremely negative impact on the population of the planet and threatens the future of mankind. One of the main sources of waste and toxic emissions into the atmosphere is the construction sector. It is necessary to find ways to minimize the damage caused to nature. Currently, artificial intelligence technologies are among the most promising ways to improve the environment. Automatic control systems solve a number of problems related to reducing costs and resources, full use of renewable energy sources, improving the safety of energy systems, and many others. The purpose of this article is to determine the functionality of artificial intelligence technologies and ways of their application in green construction. To solve this problem, methods of analysis and synthesis of existing information models were applied. The article discloses automatic control systems in the design, construction, and operation of buildings. These include well-known methods, such as Building Information Model, Machine Learning, Deep Learning, and narrow-profile ones: Response Surface Methodology, Multi-Agent System, Digital Twins, etc. In addition, the study states that when planning and arranging green buildings must adhere to the following principles: high energy efficiency, rational use of natural resources, adaptation to the environment and climate, ensuring comfort and safety for residents. The article presents the standards of green construction existing in the world. This work can serve as a guide when choosing information models and is of practical value in the development of green buildings.
PL
Globalne zanieczyszczenie środowiska ma niezwykle negatywny wpływ na naszą planetę i zagraża przyszłości ludzkości. Jednym z głównych źródeł emisji odpadów i substancji toksycznych do atmosfery jest sektor budowlany. Konieczne jest znalezienie sposobów na zminimalizowanie szkód wyrządzanych przyrodzie. Obecnie technologie sztucznej inteligencji należą do najbardziej obiecujących sposobów poprawy stanu środowiska. Układy automatyki rozwiązują szereg problemów związanych z redukcją kosztów i zasobów, pełnym wykorzystaniem odnawialnych źródeł energii, poprawą bezpieczeństwa systemów energetycznych i wieloma innymi. Celem artykułu jest określenie funkcjonalności technologii sztucznej inteligencji oraz sposobów jej zastosowania w zielonym budownictwie. Zastosowano metody analizy i syntezy istniejących modeli informacyjnych. W artykule opisano systemy automatycznego sterowania w projektowaniu, budowie i eksploatacji budynków. Należą do nich dobrze znane metody, takie jak Building Information Model, Machine Learning, Deep Learning, oraz wąskoprofilowe: Response Surface Methodology, Multi-Agent System, Digital Twins itp. Ponadto badanie stwierdza, że podczas planowania i aranżacji zielone budynki muszą spełniać następujące zasady: wysoka efektywność energetyczna, racjonalne wykorzystanie zasobów naturalnych, dostosowanie do środowiska i klimatu, zapewnienie komfortu i bezpieczeństwa mieszkańcom. W artykule przedstawiono standardy zielonego budownictwa istniejące na świecie. Praca ta może służyć jako przewodnik przy wyborze modeli informacyjnych i ma praktyczną wartość w rozwoju zielonych budynków.
Czasopismo
Rocznik
Strony
254--262
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Hunan University,Yuelu Academy, Department of Philosophy,410082, YueluDistrict, Changsha, Hunan Province, People's Republic of China
autor
  • Guilin University of Electronic Technology, School of Art and Design, Guilin, China
Bibliografia
  • 1. AKOMEA-FRIMPONG I., KUKAH A. S., JIN X., OSEI-KYEI R., PARIAFSAI F., 2022, Green finance for green buildings: A systematic review and conceptual foundation, Journal of Cleaner Production 356: 131869.DOI: https://doi.org/10.1016/j.jclepro.2022.131869
  • 2. BADUGE S.K., THILAKARATHNA S., PERERA J.S., ARASHPOUR M., SHARAFI P., TEODOSIO B., SHRINGI A., MENDIS P., 2022, Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications, Automation in Construction 141: 104440.DOI: https://doi.org/10.1016/j.autcon.2022.104440
  • 3. BUILTIN, 2022, What is deep learning and how does it work? https://builtin.com/machine-learning/what-is-deep-learning.
  • 4. CHINESESTANDARD.NET, 2014, Assessment standard for green building, https://www.chinesestandard.net/PDF.aspx/GBT50378-2014.
  • 5. DING Z., LI Z., FAN C., 2018, Building energy savings: Analysis of research trends based on text min-ing, Automation in Construction 96: 398-410.DOI: https://doi.org/10.1016/j.autcon.2018.10.008
  • 6. DOUNIS A.I., 2010, Artificial intelligence for energy conservation in buildings, Advances in Building Energy Research 4(1): 267-299.DOI: https://doi.org/10.3763/aber.2009.0408
  • 7. DOWLING R., MCGUIRK P., MAALSEN S., SADOWSKI J., 2021, How smart cities are made: A priori, ad hoc and post hoc drivers of smart city implementation in Sydney, Australia, Urban Studies, 58(16): 3299-3315.DOI: https://doi.org/10.1177/0042098020986292
  • 8. GOHARI S., BAER D., NIELSEN B. F., GILCHER E., SITUMORANG W.Z., 2020, Prevailing ap-proaches and practices of citizen participation in smart city projects: Lessons from Trondheim, Nor-way, Infrastructures 5(4): 36.DOI: https://doi.org/10.3390/infrastructures5040036
  • 9. IEA, 2019, Global Status Report for Buildings and Construction, https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019.
  • 10. JINKANG R., 2019, Environmental impact, significance and development direction of green buildings, Green Building Materials 3: 30-31.
  • 11. JONBAN M.S., ROMERAL L., AKBARIMAJD A., ALI Z., GHAZIMIRSAEID S.S., MARZBAND M., PUTRUS G., 2021, Autonomous energy management system with self-healing capabilities for green buildings (microgrids), Journal of Building Engineering 34: 101604.DOI: https://doi.org/10.1016/j.jobe.2020.101604
  • 12. KARCHES T., 2022, Fine-tuning the aeration control for energy-efficient operation in a small sewage treatment plant by applying biokinetic modeling. Energies 15(17): 6113, https://doi.org/10.3390/en15176113.DOI: https://doi.org/10.3390/en15176113
  • 13. KAYA M.M., TAŞKIRAN Y., KANOĞLU A., DEMİRTAŞ A., ZOR E., BURÇAK I., NACAK M.C., AKGÜL F.T., 2021, Designing a smart home management system with artificial intelligence & machine learning, technical report, DOI: 10.13140/RG.2.2.33082.72641/1.
  • 14. LI Q., LONG R., CHEN H., CHEN F., WANG J., 2020, Visualized analysis of global green buildings: Development, barriers and future directions, Journal of Cleaner Production 245: 118775.DOI: https://doi.org/10.1016/j.jclepro.2019.118775
  • 15. LU H., SHENG X., DU F., 2022, Economic benefit evaluation system of green building energy saving building technology based on entropy weight method, Processes 10(2): 382.DOI: https://doi.org/10.3390/pr10020382
  • 16. PERSHAKOV V., BIELIATYNSKYI A., POPOVYCH I., LYSNYTSKA K., KRASHENINNIKOV V., 2016, Progressive collapse of high-rise buildings from fire, MATEC Web of Conferences 73: 01001, https://doi.org/10.1051/matecconf/20167301001.DOI: https://doi.org/10.1051/matecconf/20167301001
  • 17. SERRANO W., 2022, iBuilding: Artificial intelligence in intelligent buildings, Computing and Applications 34(2): 875-897.DOI: https://doi.org/10.1007/s00521-021-05967-y
  • 18. SHAHSAVAR M.M., AKRAMI M., GHEIBI M., KAVIANPOUR B., FATHOLLAHI-FARD A.M., BEHZADIAN K., 2021, Constructing a smart framework for supplying the biogas energy in green build-ings using an integration of response surface methodology, artificial intelligence and petri net modelling, Energy Conversion and Management 248: 114794.DOI: https://doi.org/10.1016/j.enconman.2021.114794
  • 19. SHEN Y., FAURE M., 2021, Green building in China, International Environmental Agreements: Poli-tics, Law and Economics 21(2): 183-199.DOI: https://doi.org/10.1007/s10784-020-09495-3
  • 20. THORPE D., ENSHASSI A., MOHAMED S., ABUSHABAN S., COURS S., 2010, The impacts of con-struction and the built environment, Willmott Dixon, London.
  • 21. UN, 2015, UN Sustainability Goals, https://www.home.sandvik/en/about-us/sustainable-business/global-commitments/UN-global-goals-index/?gclid=EAIaIQobChMIibLSzZvO_AIVc0eRBR1WqAeMEAAYASAAEgIDjPD_BwE.
  • 22. UN, 2020, The Paris Agreement, https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.
  • 23. W, Z., JIANG M., CAI Y., WANG H., LI S., 2019, What hinders the development of green building? An investigation of China, International Journal of Environmental Research and Public Health 16(17): 3140.DOI: https://doi.org/10.3390/ijerph16173140
  • 24. WAN Y., ZHAI Y., WANG X., CUI C., 2022, Evaluation of indoor energy-saving optimization design of green buildings based on the intelligent GANN-BIM model, Mathematical Problems in Engineering 1: 10.DOI: https://doi.org/10.1155/2022/3130512
  • 25. WANG C., 2021, Evaluation algorithm of ecological energy-saving effect of green buildings based on Gray correlation degree, Journal of Mathematics 1: 10.DOI: https://doi.org/10.1155/2021/6705220
  • 26. WANG W., TIAN Z., XI W., TAN Y. R., DENG Y., 2021, The influencing factors of China’s green build-ing development: An analysis using RBF-WINGS method, Building and Environment 188: 107425.DOI: https://doi.org/10.1016/j.buildenv.2020.107425
  • 27. WEI Y., 2021, The development of green building technology, IOP Conference Series: Earth and Envi-ronmental Science 812(1): 012011.DOI: https://doi.org/10.1088/1755-1315/812/1/012011
  • 28. WORLDGBC.ORG, 2019, About Green Building, https://www.worldgbc.org/what-green-building.
  • 29. WUNI I. Y., SHEN G. Q., OSEI-KYEI R., 2019, Scientometric review of global research trends on green buildings in construction journals from 1992 to 2018, Energy and Buildings 190: 69-85.DOI: https://doi.org/10.1016/j.enbuild.2019.02.010
  • 30. XUE F., ZHAO J., 2021, Application calibration based on energy consumption model in optimal design of green buildings, Advances in Materials Science and Engineering 1: 9.DOI: https://doi.org/10.1155/2021/5360443
  • 31. YANG B., LV Z., WANG F., 2022, Digital twins for intelligent green buildings, Buildings 12(6): 856.DOI: https://doi.org/10.3390/buildings12060856
  • 32. ZAKHAROV A.N., KALASHNIKOV D.B., 2020, Environmental problems of China’s industrial devel-opment, Russian Foreign Economic Bulletin 1: 40-50.
  • 33. ZHANG Y., WANG H., GAO W., WANG F., ZHOU N., KAMMEN D., YING X., 2019, A survey of the status and challenges of green building development in various countries, Sustainability 11(19): 5385.DOI: https://doi.org/10.3390/su11195385
  • 34. ZHANG Y., WANG J., HU F., WANG Y., 2017, Comparison of evaluation standards for green building in China, Britain, United States, Renewable and Sustainable Energy Reviews 68: 262-271.DOI: https://doi.org/10.1016/j.rser.2016.09.139
  • 35. ZHAO X.G., GAO C.P., 2022, Research on energy-saving design method of green building based on BIM technology, Scientific Programming 1: 10.DOI: https://doi.org/10.1155/2022/2108781
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b764e31-0311-4d06-ab84-f1191b02dd9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.