PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flanged deep corrugated vertical shaft liners

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
European Conference on Buried Flexible Steel Structures (3 ; 24-25.04.2017 ; Rydzyna, Polska)
Języki publikacji
EN
Abstrakty
EN
Vertical shafts are used for ventilation, access for equipment/personnel, or storm-water transmission to underground cavities. Larger diameter vertical shafts are traditionally lined using either concrete or flat steel forms. This paper introduces flanged deep corrugated plate (FDCP) as an economical vertical shaft liner. For safety and accessibility reasons, shaft liners typically require installation be conducted from only one side of the liner. Shallow corrugated steel liner plates, which enables one side assembly, has been used for decades. However, shallow corrugated liner plate’s strength has limited their use to smaller (less than 6 m) diameters. FDCP, commonly referred to as The Edge, was first introduced to the marketplace in 2012 and is five times stronger and nine times stiffer than traditional steel liner plate. FDCP is available in two-flange and four-flange configurations and is best suited for applications: 1. required to resist ground/hydrostatic pressures or ground movements greater than the capacity of shallow corrugated liner plate; 2. needing to resist unbalanced loads; 3. where greater flowable fill pour heights are desired; 4. with diameters > 6 m. FDCP is designed to the same structural limit states as traditional overlap plates with the additional consideration of shear load at bolted connections. AASHTO LRFD Section 12.13 may be used as a guideline when determining loads and structural limit states for vertical shaft liners. FDCP is well suited for vertical shaft liners. Vertical shafts with diameters > 6 m and depths < 40 m are generally more economical and faster to construct when lined with FDCP. Product and construction innovations are required to increase advancement rate and shaft depth for which FDCP compares favourably to traditional concrete liner.
Rocznik
Tom
Strony
301--309
Opis fizyczny
Bibliogr. 5 poz., rys.
Twórcy
autor
  • Buried Bridges, Atlantic Industries Limited, Ontario, Canada
autor
  • Mining, Tunneling & Rail Infrastructure, Atlantic Industries Limited, Ontario, Canada
Bibliografia
  • 1. Glenn M Boyce, P. P. (2016, December 20). Shaft Design and Construction. Retrieved from Tunnel Business Magazine: http://tunnelingonline.com/shaft-design-and-construction/
  • 2. Priyadarshi , H., Fenrick, G., & Caldwell, J. (2017, January 5). Raiseboring. Retrieved from TechnoMine: http://technology.infomine.com/reviews/raiseboring/welcome.asp?view=full
  • 3. Shutters, T., & Morgan, J. (2017, January 1). Indiana Water Environment Association 2016 Annual Conference. Retrieved from Presentation Abstract: http://indianawea.org/wp-content/uploads/gravity_forms/61-bb2ade6a67ef44c47 db07520dl 95ecb5/2016/03/1WEA-2016-Abstract-Top- Down-and-Bottom-Up-Shaft-Construction-Shutters Morgan.pdf
  • 4. Transportation, A. A. (2016). AASHTO LRFD Bridge Design Specifications 7th Edition, with 2015 and 2016 Interim Revisions. Washington, DC: American Association of State Highway and Transportation Officials.
  • 5. Williams, K., Newhook, J., & MacKinnon, S. (2012). New and Innovative Developments for Design and Installation of Deep Corrugated Buried Flexible Steel Structures. The 2nd European Conference on Buried Flexible Steel Structures (p. 8). Rydzyna, Poland: Archives of Institute of Civil Engineering.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b74e487-79d2-4a61-9da5-03d008e69524
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.