PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: To explore readout architectures for the simultaneous high-resolution timing and bidimensional tracking of charged particles with Resistive Plate Chambers (TOF-tracker) and for the accurate detection of gamma rays for Positron Emission Tomography (PET). Materials and methods: Resistive plate chambers and their corresponding readout systems under evaluation were exposed to cosmic rays and β+ sources. Results: Over an active area of 625 cm2, we obtained a time resolution of 61 ps ơ and bidimensional position resolution below 150 μm ơ for the tracking and timing of charged particles from cosmic rays. The intrinsic precision for localising a small β+ source via the detection of its annihilation radiation was determined to be 0.49 mm FWHM. Conclusions: The proposed device exhibits excellent timing and position resolution for the tracking and timing of charged particles, with potential applications in nuclear and high-energy particle physics, as well as gamma imaging with applications in PET.
Rocznik
Strony
1--6
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
  • Coimbra Institute of Engineering, Polytechnic University of Coimbra, Rua Pedro Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal
  • LIP - Laboratory of Instrumentation and Experimental Particle Physics, Coimbra, Portugal
  • Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
  • LIP - Laboratory of Instrumentation and Experimental Particle Physics, Coimbra, Portugal
  • Escola Superior de Tecnologia da Saúde do Porto - IPP, Vila Nova de Gaia, Portugal
  • Coimbra Institute of Engineering, Polytechnic University of Coimbra, Rua Pedro Nunes - Quinta da Nora, Coimbra, Portugal
  • LIP - Laboratory of Instrumentation and Experimental Particle Physics, Coimbra, Portugal
  • Coimbra Institute of Engineering, Polytechnic University of Coimbra, Rua Pedro Nunes - Quinta da Nora, Coimbra, Portugal
  • LIP - Laboratory of Instrumentation and Experimental Particle Physics, Coimbra, Portugal
  • Department of Physics, University of Coimbra, Coimbra, Portugal
autor
  • Goethe Univ., Inst. Kernphys, Frankfurt, Germany
  • LIP - Laboratory of Instrumentation and Experimental Particle Physics, Coimbra, Portugal
  • GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
  • Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
  • ICNAS Pharma, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
  • LIP - Laboratory of Instrumentation and Experimental Particle Physics, Coimbra, Portugal
  • Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
  • ICNAS Pharma, Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
Bibliografia
  • 1. Blanco A, Fonte P, Lopes L, Martins P, Michel J, Palka M, et al. TOFtracker: gaseous detector with bidimensional tracking and time-of-flight capabilities. J Inst. 2012;7:P11012. doi: https://www.doi.org/10.1088/1748-0221/7/11/P11012.
  • 2. Aielli G, Cardarelli R, Stante LD, Liberti B, Paolozzi L, Pastori E, et al. The RPC space resolution with the charge centroid method. J Inst. 2014;9:C09030. doi: https://www.doi.org/10.1088/1748-0221/9/09/C09030.
  • 3. Assis P, Bernardino A, Blanco A, Clemêncio F, Carolino N, Cunha O, et al. A large area TOF-tracker device based on multi-gap Resistive Plate Chambers. J Inst. 2016;11:C10002. doi: https://www.doi.org/10.1088/1748-0221/11/10/C10002.
  • 4. Chen XL, Wang Y, Chen G, Han D, Guo B, Wang F, et al. MRPC technology for muon tomography. J Inst. 2020;15:C12001. doi: https://www.doi.org/10.1088/1748-0221/15/12/C12001.
  • 5. Uda R, Hayashi F, Tomida N, Chang W-C, Chu M-L, Hsieh C-Y, et al. Development of a precise time and position resolution TOF-tracker MRPC for the π 20 beam line at J-PARC. Nucl. Instrum. Methods Phys. Res. A. 2023;1056:168580. doi: https://www.doi.org/10.1016/j. nima.2023.168580.
  • 6. Alavi A, Werner TJ, Stępień EŁ, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. Bio-Algorithms and Med-Systems. 2022;17:203-12. doi: https://www.doi.org/10.1515/bams-2021-0186.
  • 7. Fonte P, Lopes L, Alves R, Carolino N, Crespo P, Couceiro M, et al. An RPC-PET brain scanner demonstrator: First results. Nucl. Instrum. Methods Phys. Res. A. 2023;1051:168236. doi: https://www.doi.org/10.1016/j.nima.2023.168236.
  • 8. Jean YC, Nakanishi H, Hao LY, Sandreczki TC. Anisotropy of free-volume-hole dimensions in polymers probed by positron-annihilation spectroscopy. Phys Rev B. 1990;42:9705-8. doi: https://www.doi.org/10.1103/PhysRevB.42.9705.
  • 9. Majewski S. Perspectives of brain imaging with PET systems. Bio-Algorithms and Med-Systems. 2022;17:269-91. doi: https://www.doi.org/10.1515/bams-2021-0178.
  • 10. Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, et al. Positronium image of the human brain in vivo. Sci Adv. 2024;10:eadp2840. doi: https://www.doi.org/10.1126/sciadv.adp2840.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b72aed1-cc6a-4aad-bb76-f95f0d36904f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.