PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of selected cooling systems on the urban natural environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to indicate the possibility of using refrigerants which do not have a harmful effect on the destruction of the Earth's ozone layer and the urban environment. Design/methodology/approach: The environmental impact of refrigerants was characterized. Selected refrigerants and their place of application are described. The impact of selected refrigerants on the urban environment is presented. Findings: An attempt has been made to identify the absolute environmental impact of selected stationary refrigeration systems in operation in cities, i.e. home refrigerators, individual air conditioners, heat pumps, air conditioning systems of large-format stores - shopping centers, or cold stores. Both the direct impact related to the refrigerant used in the system and the indirect one related to the energy consumption to drive the device have been considered. Practical implications: Use of new refrigerants that do not damage the Earth's ozone layer. Originality/value: The environmental impact of different refrigerants is presented. The paper is addressed to technical services and personnel responsible for the design and operation of refrigeration and air-conditioning equipment.
Rocznik
Tom
Strony
111--120
Opis fizyczny
Bibliogr. 10 poz.
Bibliografia
  • 1. Coulomb, D. and Dupont, J.-L (2017). The impact of the refrigeration sector on climate change, 35th Informatory Note on Refrigeration Technologies.
  • 2. Dupont, J.L., Domanski, P., Lebrun, P., Ziegler, F. (2019). The Role of Refrigeration in the Global Economy. 38th Note on Refrigeration Technologies. s.l. IIF-IIR.
  • 3. Garcia Pabon, J.J, Khosravi, A., Belman-Flores, J.M., Machado L., Revellin, R. (2020). Applications of refrigerant R1234yf in heating, air conditioning and refrigeration systems: A decade of researches. International Journal of Refrigeration, pp. 104-113.
  • 4. https://www.lg.com/us/support/products/documents/LRFDS3006%20Spec%20Sheet.pdf.
  • 5. Krajowa baza o emisjach gazów cieplarnianych i innych substancji - KOBiZE (2019).
  • 6. Lemmin, E.W. et al. (2018). NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0. National Institute of Standards and Technology. Standard Reference Data Program.
  • 7. Newchurch, M.J., et al. (2003). Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery. Journal Of Geophysical Research, Vol. 108, D16,4507.
  • 8. PN-EN 378-3+A1:2021. Instalacje chłodnicze i pompy ciepła - Wymagania dotyczące bezpieczeństwa i ochrony środowiska.
  • 9. .Montreal Protocol on Substances That Deplete the Ozone Layer (1987). New York, USA: United Nations.
  • 10. Weier Tang, Guogeng He, Dehua Cai, Yihao Zhu, Aoni Zhang, Qiqi Tian (2017). The experimental investigation of refrigerant distribution and leaking characteristics of R290 in split type household air conditioner. Applied Thermal Engineering, Vol. 115, pp. 72-80.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b6eecb4-8b56-437d-b64e-c151329fda19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.