Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The impact of a simple trailing-edge plain flap on the aerodynamics of the SD7037 airfoil have been studied in this paper using computational fluid dynamics at Reynolds number of 3 × 105 across various low angles of attack and flap deflection angles. The computational model was evaluated by using Star CCM+ software with κ–ω SST turbulence and gamma transition model to solve Navier-Stokes equations. The accuracy of the computational model has been confirmed through comparison with experimental data, showing a high level of agreement at low angles of attack. The findings revealed that specific combinations of angles of attack and flap deflection angles could increase the lift-to-drag ratio by over 70% compared to baseline conditions, benefiting airfoil performance, particularly during takeoff. Some combinations, however, resulted in decreased performance and should be avoided. The results also showed that with the increase of either the angle of attack or the flap deflection angle, the pitching moment increased
Wydawca
Czasopismo
Rocznik
Tom
Strony
561--580
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
- Department of Aeronautical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
- [1] J.D. Anderson Jr. Introduction to Flight, 8th edition, McGraw-Hill Education, 2016.
- [2] M.H. Sadraey. Design of Unmanned Aerial Systems, 1st edition, John Wiley & Sons Ltd, 2020. doi: 10.1002/9781119508618.
- [3] S. Wang and G. Zheng. Design, optimization and application of two-element airfoils for tactical UAV. Advances in Mechanical Engineering, 14(11), 2022. doi: 10.1177/16878132221137027.
- [4] N. Salam, R. Tarakka, Jalaluddin, D. Iriansyah, and M. Ihsan. The effects of flap angles on the aerodynamic performances of a homebuilt aircraft wing model. International Journal of Mechanical Engineering and Robotics Research, 11(12):908–914, 2022. doi: 10.18178/ijmerr.11.12.908-914.
- [5] V. Patel, V. Rathod, and C. Patel. Numerical investigation of M21 aerofoil and effect of plain flapper at various angle of attack. Journal of Physics: Conference Series, 2070:012153, 2021. doi: 10.1088/1742-6596/2070/1/012153.
- [6] G.A. Vinod and T.J.S. Jothi. Effect of flap deflection angle on flow characteristics of aerofoil. IOP Conference Series: Materials Science and Engineering, 1189:012039, 2021. doi: 10.1088/1757-899X/1189/1/012039.
- [7] G. Ramanan, P. Radha Krishnan, H.M. Ranjan. An aerodynamic performance study and analysis of SD7037 fixed wing UAV airfoil. Materials Today: Proceedings, 47(10):2547–2552, 2021. doi: 10.1016/j.matpr.2021.05.051.
- [8] I. Singh. Effect of plain flap over the aerodynamic characteristics of airfoil NACA 66-015. International Journal of Innovative Science and Research Technology, 2(6):353–365, 2017.
- [9] D. Pracheta, A. Anup, A. Shahriar, and R.B. Saifur. Computational study on effect of flap deflection on NACA 2412 airfoil in subsonic flow. Applied Mechanics and Materials, 829:9– 14, 2016.doi: 10.4028/www.scientific.net/AMM.829.9.
- [10] S. Srivastava and C.V.N. Aditya. Analysis on NACA 2412 airfoil for UAV based on high-liftdevices. International Journal of Engineering Applied Sciences and Technology, 1(6):13–16, 2016. doi: 10.13140/RG.2.2.35353.95841.
- [11] T. Hassan, M.T. Islam, M.M. Rahman, A.R.I. Ali, and A.A. Ziyan. Evaluation of different turbulence models at low reynolds number for the flow over symmetric and cambered airfoils. Journal of Engineering Advancements, 3(01):12–22, 2022. doi: 10.38032/jea.2022.01.003.
- [12] S.A. Khan, M. Bashir, M.A.A. Baig, and F.A.G.M. Ali. Comparing the effect of different turbulence models on the CFD predictions of NACA0018 airfoil aerodynamics. CFD Letters, 12(3):1–10.doi: 10.37934/cfdl.12.3.110.
- [13] C. Suvanjumrat. Comparison of turbulence models for flow past NACA0015 airfoil using OpenFOAM. Engineering Journal, 21(3):207–221, 2017. doi: 10.4186/ej.2017.21.3.207.
- [14] S.M.A. Aftab, A.S. Mohd Rafie, N.A. Razak, and K.A. Ahmad. Turbulence model selection for low Reynolds number flows. PLoS ONE, 11(4):e0153755, 2016. doi: 10.1371/journal.pone.0153755.
- [15] S. Bogos, A. Dumitrache, and F. Frunzulica; Turbulence models in CFD simulation of low-Reynolds number airfoils flow. AIP Conference Proceedings, 1648:500006, 2015. doi: 10.1063/1.4912704.
- [16] C.A. Lyon, A.P. Broeren, P. Giguere, A. Gopalarathnam, and M.S. Selig. Summary of Low-Speed Airfoil Data. Vol. 3. SoarTech Publications, 1997.
- [17] F.R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications.AIAA Journal, 32(8):1598-1605, 1994. doi: 10.2514/3.12149.
- [18] H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, 2007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b6ea577-c254-4700-9bf8-d7b55b2e0736
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.