PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adjustment of limestone grinding in an electromagnetic mill for use in production of sorbents for flue gas desulphurization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the study of the effectiveness of the grinding in an electromagnetic mill for limestone with the feed particle size up to 0.5 mm and 1 mm. The goal was to prepare material for specific particle size fractions of fine and coarse sorbents used for flue gas desulfurization. The work focused on optimizing the duration of the grinding and selecting grinding media properties to obtain the highest relative increase in the 50 μm and 50-100 μm particle size fraction in the grinding product. An important element for grinding control is the knowledge of the impact characteristics for main parameters and factors on the efficiency of the material comminution. The grinding results show its kinetics of grinding product yield. A model was also created that shows the relationship between grinding time and the process efficiency and can be used to optimize the process. The research allowed to determine the impact of changes in the parameters of the mill and the feed, which will allow to determine the controls for the system’s continuous operation. It is crucial to determine the efficiency of the mill. It depends on the degree of material fragmentation and the granularity of the feed subjected to the grinding. Both of these parameters are different for different raw materials. Determination of grinding kinetics models allowed to determine the dependence of function between the growth of the selected particle size fraction in the product and the residence time of material.
Rocznik
Strony
779--791
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • The Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Krakow, Poland
  • AGH University of Science and Technology in Cracow
  • AGH University of Science and Technology in Cracow
  • AGH University of Science and Technology in Cracow
  • AGH University of Science and Technology in Cracow
Bibliografia
  • BERTHOUEX P.M., BROWN L.C., 2002. Statistics for Environmental Engineers, CRC Press LLC, Boca Ronto, FL, USA.
  • BOND, F.C., 1952. The third theory of comminution. Trans. AIME, 193, 484–494.
  • CAMERON I.; HANGOS K., 2001. Process Modelling and Model Analysis, Academic Press, London, UK, pp.100-249.
  • CHODOROWSKI J.; SALOMOWICZ W., 2004. Investigation of sorbent molecules, The script SGSP, Warsaw, Poland. (in Polish)
  • DELBONI, H.J.; MORRELL, S., 2002. A load-interactive model for predicting the performance of autogenous and semiautogenous mills. KONA Powder Part. J., 20, 208–222.
  • FOSZCZ D., 2006. Estimation of regression function parameters by classical and bootstrap methods. Górnictwo I Geoinżynieria, 30, 57–78. (In Polish)
  • GUPTA, V.K.; SHARMA, S., 2014. Analysis of ball mill grinding operation using mill power specific kinetic parameters. Adv. Powder Technol., 25, 625–634.
  • HLINCIK T.; BURYAN P., 2013. Evaluation of limestones for the purposes of desulphurization during the fluid combustion of brown coal. Fuel, 104, pp.208-215.
  • KICK, F., 1885. Das Gesetz der Proportionalen Widerstände Und Seine Anwendungen; Felix: Leipzig, Germany.
  • KING R.P., 2012. Modeling and Simulation of mineral processing system, Elsevier Science Ltd.: New York, NY, USA, pp. 30-170.
  • KOTOWSKI C.; RATAJCZAK T., 2010. The Carboniferous limestones from Czatkowice - their technological potential and possibilities of utilization. Górnictwo i Geoinżynieria, 34, pp.339-348. (in Polish)
  • KRAWCZYKOWSKI D.; FOSZCZ D., OGONOWSKI S.; GAWENDA T., WOŁOSIEWICZ-GŁĄB M., 2018. Analysis of the working chamber size influence on the effectiveness of grinding in electromagnetic mill. MEC 2018: Mineral Engineering Conference: Zawiercie, 26–29 September, pp. 43.
  • LEE-ING T.; CHUNG-HO W., 2002. Statistica V5.5 Basic Statistic Analysis. TasnghHai Taiwan Publisher, Taiwan.
  • MAXWELL S. E.; DELANEY H. D., 2004. Designing experiments and analysing data: Model comparison perspective (2nd ed.). Mahwah NY: Lawrence Erlbaum Associates, New York, NY, USA.
  • NAPIER-MUNN, T.; WILLS, B.A., 2006. Wills’ Mineral Processing Technology, 7th ed.; Elsevier Science Ltd.: New York, NY, USA, pp.90–108.
  • NIEDOBA T., 2013. Multidimensional characteristics of random variables in description of grained materials and their separation processes. Wydawnictwo Instytutu Gospodarki Surowcami Mineralnymi i Energią, Krakow, Poland, pp.127-139. (in Polish)
  • NOLAN, PAUL S., 2000. Flue Gas Desulfurization Technologies for Coal-Fired Power Plants, The Babcock & Wilcox Company, U.S., presented by Michael X. Jiang at the Coal-Tech 2000 International Conference, November, Jakarta, Indonesia
  • OGONOWSKI, S.; WOŁOSIEWICZ-GŁĄB, M.; OGONOWSKI, Z.; FOSZCZ, D.; PAWEŁCZYK, M., 2018. Comparison of Wet and Dry Grinding in Electromagnetic Mill. Minerals, 8, 138.
  • OGONOWSKI, S.; OGONOWSKI, Z.; SWIERZY, M., 2017. Power optimizing control of grinding process in electromagnetic mill. In Proceedings of the 2017 21st International Conference on Process Control, Štrbské Pleso, Slovakia, 6–9 June; pp. 370–375.
  • PAWEŁCZYK M., OGONOWSKI Z., OGONOWSKI S., FOSZCZ D., SARAMAK D., GAWENDA T., KRAWCZYKOWSKI D., 2015. A method for dry grinding mill electromagnetic (in polish), patent application no. P.413041 (06.07.2015).
  • PETRAKIS E. AND KOMNITSAS K., 2017. Improved modeling of the grinding process through the combined use of matrix and population balance models. Minerals, 7 (5), 67.
  • RITTINGER, P.R., 1867. Lehrbuch der Aufbereitungskunde; Ernst and Korn: Berlin, Germany.
  • SHIN, H., LEE, S., JUNG, H.S., KIM, J-B., 2013. Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill. Ceram. Int., 39, 8963–8968.
  • TOUIL, D.; BELAADI, S. FRANCES C., 2008. The specific selection function effect on clinker grinding efficiency in a dry batch ball mill. Int. J. Miner. Proc., 87, 141–145.
  • TUMIDAJSKI T., 1997. Stochastic analysis of properties of grained materials and their separation processes, The script AGH, Krakow, Poland. (in Polish)
  • TUMIDAJSKI T.; SARAMAK D., 2009. Methods and models of mathematical statistics in the processing of mineral resources, The script AGH, Krakow, Poland. (in Polish)
  • WALKER, D.R.; SHAW, M.C., 1954. A physical explanation of the empirical laws of comminution. Trans. AIME, 199, 313–320.
  • WANG Y.; FORSSBERG E., 2007. Enhancement of energy efficiency for mechanical production of fine and ultra-fine particles in comminution. China Particuology, 5, pp.193-201.
  • WOŁOSIEWICZ-GŁĄB M.; PIĘTA P.; FOSZCZ D.; OGONOWSKI SZ.; NIEDOBA T., 2018. Grinding Kinetics Adjustment of Copper Ore Grinding in an Innovative Electromagnetic Mill. Applied Sciences, 8(8), 1322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b6cc261-3d4f-4f59-94eb-c33be5581563
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.