Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an originally-developed system for design and optimization of AC-DC converters dedicated in particular to operation in distributed generation systems. The proposed procedure is based on a multi-objective discrete optimization and expert knowledge of electrical engineering, especially power electronics. The required accuracy of calculations is obtained by using the database with real components, while the parameters applied in calculations are based on parameters provided by the manufacturer. The paper presents the foundations and basic system properties, the design and optimization process, and selected optimization results, obtained with a fully functional prototype of the design and optimization system (DaOS).
Rocznik
Tom
Strony
897--905
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
autor
- Institute of Theory of Electrical Engineering, Measurement and Information Systems, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
autor
- Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
autor
- Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
Bibliografia
- [1] R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems, John Wiley & Sons, Inc., 2011.
- [2] L.L. Grigsby, Electric Power Generation, Transmission, and Distribution. The Electric Power Engineering Handbook, 3rd ed., CRC Press, 2012.
- [3] J.W. Kolar, T. Friedli, J. Rodriguez, and P.W. Wheeler, “Review of three-phase PWM AC-AC converter topologies”, IEEE Trans. Ind. Electron. 58 (11), 4988–5006 (2011).
- [4] V. Chankong and Y.Y. Haimes, Multiobjective Decision Making: Theory and Methodology, North-Holland, Amsterdam, 1983.
- [5] J. Branke, K. Deb, K. Miettinen, and R. Słowiński, “Multiobjective Optimization, Interactive and Evolutionary Approaches”, Springer, 2008.
- [6] J. W. Kolar, J. Biela, S. Waffler, T. Friedli, and U. Badstuebner, “Performance trends and limitations of power electronics systems”, 6th International Conference on Integrated Power Electronics Systems (CIPS 2010), 1–20 (2010).
- [7] C. Larouci, M. Boukhnifer, and A. Chaibet, “Design of power converters by optimization under multiphysic constraints: Application to a two-time-scale AC/DC-DC converter”, IEEE Trans. Ind. Electron. 57 (11), 3746–3753 (2010).
- [8] N. Froehleke, D. Hahm, H. Mundinger, H. Njiende, P. Wallmeier, and H. Puder, “CAE-tool for optimizing development of switched mode power supplies”, Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2001) 2, 752–758 (2001).
- [9] B.Y.S. Busquets-Monge, G. Soremekun, E. Hertz, C. Crebier, S. Ragon, D. Boroyevich, Z. Gürdal, M. Arpilliere, and D.K. Lindner, “Power converter design optimization. A GA-based design approach to optimization of power electronics circuits”, IEEE Ind. Appl. Mag. 10 (1), 32–39 (2004).
- [10] S. Koziel and A. Bekasiewicz, “Recent developments in simulation-driven multi-objective design of antennas”, Bull. Pol. Ac.: Tech. 63 (3), 781–789 (2015).
- [11] M.B. Gorzałczany and F. Rudziński, “Handling fuzzy systems” accuracy-interpretability trade-off by means of multi-objective evolutionary optimization methods – selected problems”, Bull. Pol. Ac.: Tech. 63 (3), 2015.
- [12] R.T. Marler and J.S. Arora, “Survey of multi-objective optimization methods for engineering”, Struct. Multidiscip. Optim. 26 (6), 369–395 (2004).
- [13] S. Piasecki, M.P. Kaźmierkowski, R. Szmurło, J. Rąbkowski, “System doboru i optymalizacji parametrów przekształtnika sieciowego AC-DC”, in Proc. of XII Konferencja Naukowa Sterowanie w Energoelektronice i Napędzie Elektrycznym (SENE 2015), 18–20 (2015), [in Polish].
- [14] R.C. Dugan, T.S. Key, and G.J. Ball, “Distributed resources standards”, IEEE Ind. Appl. Mag. 12 (1), 27–34 (2006).
- [15] M.P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics. Selected Problems, Academic Press, 2002.
- [16] S. Piasecki, R. Szmurlo, and M. Jasinski, “Design of AC-DC grid vonnected vonverter using multi-objective optimization”, Electr. Control Commun. Eng. 5 (1), 11–19 (2014).
- [17] S. Piasecki, “High order line filters for grid vonnected AC-DC vonverter – Parameters selection and optimization”, in IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2691–2696 (2014).
- [18] S. Piasecki, “Research and development of multi-objective optimization procedures for AC-DC grid converters, in particular for renewable/distributed energy systems”, PhD Thesis, Warsaw University of Technology, 1–227 (2016).
- [19] J.W. Kolar, U. Drofenik, J. Biela, M.L. Heldwein, H. Ertl, T. Friedli, and S.D. Round, “PWM converter power density barriers”, Power Conversion Conf. (PCC’2007), 9–29 (2007).
- [20] J.W. Kolar, J. Biela, and J. Minibock, “Exploring the Pareto front of multi-objective, single-phase PFC rectifier design optimization – 99.2% efficiency vs. 7 kW/din3 power density”, 6th International Power Electronics and Motion Control Conference (IPEMC), 1–21 (2009).
- [21] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints”, IEEE Trans. Evol. Comput. 18 (4), 577–601 (2014).
- [22] R.R. Chan, S.D. Sudhoff, Y. Lee, and E.L. Zivi, “Evolutionary optimization of power electronics based power systems”, 22nd Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2007), 449–456 (2007).
- [23] E. Zitzler, M. Laumanns, and S. Bleuler, “A Tutorial on evolutionary multiobjective optimization”, in Metaheuristics for Multiobjective Optimisation, pp. 3–37, eds. X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, Springer, Berlin, 2004.
- [24] C. Larouci, “Pre-sizing of power converters using optimization under constraints”, IEEE International Conference on Industrial Technology (ICIT), 1–6 (2008).
- [25] H. Jain and K. Deb, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach”, IEEE Trans. Evol. Comput. 18 (4), 602–622 (2014).
- [26] M. Reyes Sierra and C.A. Coello Coello, “Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance”, in Evolutionary Multi-Criterion Optimization, pp. 505–519, eds. C.A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, Springer, Berlin, 2005.
- [27] K. Deb, M. Mohan, and S. Mishra, “A fast multi-objective evolutionary algorithm for finding well-spread Pareto-optimal solutions”, 2003.
- [28] M.L.L.T. Eckart Zitzler, “SPEA2: Improving the strength Pareto evolutionary algorithm”, 2001.
- [29] E. Zitzler, M. Laumanns, and S. Bleuler, “A tutorial on evolutionary multiobjective optimization”, in Metaheuristics for Multiobjective Optimisation, pp. 3–37, eds. X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, Springer, 2004.
- [30] A.J. Nebro, J.J. Durillo, J. Garcia-Nieto, C.A. Coello Coello, F. Luna, and E. Alba, “SMPSO: A new PSO-based metaheuristic for multi-objective optimization”, 2009 IEEE Symposium on Computational Intelligence in Milti-Criteria Decision-Making, 66–73 (2009).
- [31] D. Hadka, “MOEA framework user guide”, 2014.
- [32] S. Piasecki, J. Rabkowski, G. Wrona, and T. Platek, “SiC-based support converter for passive front-end AC drive applications”, 39th Annual Conference of the IEEE Industrial Electronics Society (IECON’ 2013), 6010–6015 (2013).
- [33] J. Rabkowski, S. Piasecki, and M. P. Kazmierkowski, “Design of a three-phase AC-DC converter with paralleled SiC MOSFETs”, 16th International Power Electronics and Motion Control Conference and Exposition (PEMC), 533–539 (2014).
- [34] S. Piasecki, J. Rabkowski, and M.P. Kazmierkowski, “Application of 25mΩ SiC MOSFETs in a 10 kVA grid-connected AC-DC converter”, 16th International Conference on Silicon Carbide and Related Materials (ICSCRM), 25–26 (2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b6c846f-fcd5-4316-87f4-07ed39e2a7b8