Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
On 11 March 2021, a quite short strong signal was recorded by seismic stations of the CICESE Seismic Network, which cannot be associated with any regional or global earthquake. At the CICESE Campus and all along the city of Ensenada, in Baja California, Mexico, people reported vibration of the windows and even a short strong rumbling. Fortunately, houses and buildings did not report any damage. Due to the interaction between the atmosphere and the shallow earth surface, this anomalous atmospheric activity produced a special seismological footprint, with frequencies between 1 and 10 Hz. In this manuscript, we report on the observations of a multiparameter dataset, including seismic data along with wind velocity, wind density, temperature, humidity, atmospheric pressure, and THSW index. The atmospheric perturbation wave was strong enough to be clearly recorded by seismic stations within an area of almost 80 km and to produce some changes in the recorded meteorological parameters. The results from an FK analysis show that the atmospheric activity occurred to the south of Ensenada City and travelled to the north, as shown in the seismic records. We discuss the characteristics of the seismic signals in the frequency domain and the relation to the changes in the atmospheric parameters that could be related to this anomalous atmospheric activity.
Wydawca
Czasopismo
Rocznik
Tom
Strony
79--88
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
- Department of Applied Geophysics, Technological University Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany
autor
- Department of Seismology, CONACYT-CICESE, Centro de Investigación Científca Y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada – Tijuana No. 3918, Zona Playitas, C. P. 22860 Ensenada, BC, Mexico
autor
- Department of Seismology, Centro de Investigación Científca Y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada – Tijuana No. 3918, Zona Playitas, C. P. 22860 Ensenada, BC, Mexico
Bibliografia
- 1. Alejandro ACB, Ringler AT, Wilson DC, Anthony RE, Moore SV (2020) Towards understanding relationships between atmospheric pressure variations and long-period horizontal seismic data: a case study. Geophys J Int 223:676–691. https://doi.org/10.1093/gji/ggaa340
- 2. Ávila-Barrientos L, Nava FAP (2020) Gutenberg-Richter b values studies along the Mexican subduction zone and data constraints. Geofís Int 59:285–298
- 3. Bard PY (1999) Microtremor measurements: a tool for site effect estimation? The effects of surface geology on seismic motion, Irikura, Kudo. Okada Sasatani 3:1251–1279
- 4. Beyreuther M, Barsch R, Krischer L, Megies T, Behr Y, Wassermann J (2010) ObsPy: a python toolbox for seismology. Seismol Res Lett 81:530–533. https://doi.org/10.1785/gssrl.81.3.530
- 5. Bonnefoy-Claudet S, Cotton F, Bard PY (2006) The nature of noise wavefield and its applications for site effects studies. Earth-Sci Rev 79(3–4):205–227. https://doi.org/10.1016/j.earscirev.2006.07.004
- 6. Bormann P, Wielandt E (2013) Seismic Signals and noise new manual of seismological observatory practice 2 (NMSOP2) 7 mb. Deutsc GeoForschungsZentrum GFZ. https://doi.org/10.2312/GFZ.NMSOP-2_CH4
- 7. Bussert R, Kämpf H, Flechsig C, Hesse K, Nickschick T, Liu Q, Umlauft J, Vylita T, Wagner D, Wonik T, Flores HE, Alawi M (2017) Drilling into an active mofette: pilot-hole study of the impact of CO2-rich mantle-derived fluids on the geo–bio interaction in the western Eger Rift (Czech Republic). Sci Dril 23:13–27. https://doi.org/10.5194/sd-23-13-2017
- 8. Capon J (1969) High-Resolution Frequency-Wavenumber Spectrum Analysis. In: Proceedings of the IEEE 57
- 9. Castro RR, Acosta JG, Wong VM, Perez-Vertti A, Mendoza A, Inzunza L (2011) Location of aftershocks of the 4 April 2010 Mw 7.2 El Mayor-Cucapah Earthquake of Baja California, Mexico. Bull Seismol Soc Am 101:3072–3080. https://doi.org/10.1785/0120110112
- 10. De Angelis S, Bodin P (2012) Watching the wind: seismic data contamination at long periods due to atmospheric pressure-field-induced tilting. Bull Seismol Soc Am 102:1255–1265. https://doi.org/10.1785/0120110186
- 11. Ebeling CW, Stein S (2011) Seismological identification and characterization of a large hurricane. Bull Seismol Soc Am 101:399–403. https://doi.org/10.1785/0120100175
- 12. Eibl EPS, Lokmer I, Bean CJ, Akerlie E (2017) Helicopter location and tracking using seismometer recordings. Geophys J Int 209:901–908. https://doi.org/10.1093/gji/ggx048
- 13. Estrella HF, Korn M, Alberts K (2017) Analysis of the influence of wind turbine noise on seismic recordings at two wind parks in Germany. GEP 05:76–91. https://doi.org/10.4236/gep.2017.55006
- 14. Fan W, McGuire JJ, Groot-Hedlin CD, Hedlin MAH, Coats S, Fiedler JW (2019) Stormquakes. Geophys Res Lett 46:12909–12918. https://doi.org/10.1029/2019GL084217
- 15. Fletcher JM, Teran OJ, Rockwell TK, Oskin ME, Hudnut KW, Mueller KJ, Spelz RM, Akciz SO, Masana E, Faneros G, Fielding EJ, Leprince S, Morelan AE, Stock J, Lynch DK, Elliott AJ, Gold P, Liu-Zeng J, González-Ortega A, Hinojosa-Corona A, González-García J (2014) Assembly of a large earthquake from a complex fault system: surface rupture kinematics of the 4 April 2010 El Mayor-Cucapah (Mexico) Mw 7.2 earthquake. Geosphere 10:797–827. https://doi.org/10.1130/GES00933.1
- 16. Flores HE, Umlauft J, Schmidt A, Korn M (2016) Locating mofettes using seismic noise records from small dense arrays and matched field processing analysis in the NW Bohemia/Vogtland Region, Czech Republic. Near Surf Geophys 14:327–335. https://doi.org/10.3997/1873-0604.2016024
- 17. Friedrich T, Zieger T, Forbriger T, Ritter JRR (2018) Locating wind farms by seismic interferometry and migration. J Seismol 22:1469–1483. https://doi.org/10.1007/s10950-018-9779-0
- 18. Gal M, Reading AM, Ellingsen SP, Koper KD, Gibbons SJ, Näsholm SP (2014) Improved implementation of the fk and Capon methods for array analysis of seismic noise. Geophys J Int 198:1045–1054. https://doi.org/10.1093/gji/ggu183
- 19. Gassenmeier M, Sens-Schönfelder C, Delatre M, Korn M (2014) Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise. Geophys J Int 200:524–533. https://doi.org/10.1093/gji/ggu413
- 20. Gerstoft P, Bromirski PD (2016) “Weather bomb” induced seismic signals. Science 353:869–870. https://doi.org/10.1126/science.aag1616
- 21. Gualtieri L, Camargo SJ, Pascale S, Pons FME, Ekström G (2018) The persistent signature of tropical cyclones in ambient seismic noise. Earth Planet Sci Lett 484:287–294. https://doi.org/10.1016/j.epsl.2017.12.026
- 22. Guo Z, Xue M, Aydin A, Ma Z (2020) Exploring source regions of single- and double-frequency microseisms recorded in eastern North American margin (ENAM) by cross-correlation. Geophys J Int 220:1352–1367
- 23. Gupta HK (ed) (2011) Encyclopedia of solid earth geophysics. Springer, Netherlands, Dordrecht, Encyclopedia of earth sciences series. https://doi.org/10.1007/978-90-481-8702-7
- 24. Haned A, Stutzmann E, Schimmel M, Kiselev S, Davaille A, Yelles-Chaouche A (2016) Global tomography using seismic hum. Geophys J Int 204:1222–1236. https://doi.org/10.1093/gji/ggv516
- 25. Holub K, Rušajová J, Sandev M (2009) A comparison of the features of windstorms Kyrill and Emma based on seismological and meteorological observations. Meteorol Zetischrift 18:607–614. https://doi.org/10.1127/0941-2948/2009/0409
- 26. Holub K, Kalenda P, Rušajová J (2013) Mutual Coupling between meteorological parameters and secondary microseisms. Terr Atmos Ocean Sci 24:933. https://doi.org/10.3319/TAO.2013.07.04.01(T)
- 27. Inbal A, Cristea-Platon T, Ampuero J, Hillers G, Agnew D, Hough SE (2018) Sources of long-range anthropogenic noise in Southern California and implications for tectonic tremor detection. Bull Seismol Soc Am. https://doi.org/10.1785/0120180130
- 28. Larose E, Carrière S, Voisin C, Bottelin P, Baillet L, Guéguen P, Walter F, Jongmans D, Guillier B, Garambois S, Gimbert F, Massey C (2015) Environmental seismology: what can we learn on earth surface processes with ambient noise? J Appl Geophys 116:62–74. https://doi.org/10.1016/j.jappgeo.2015.02.001
- 29. Longuet-Higgins MS (1950) A theory of the origin of microseisms. Philosophical Transactions of the Royal Society of London, Mathematical and Physical Sciences, p 38
- 30. Lott FF, Ritter JRR, Al-Qaryouti M, Corsmeier U (2017) On the analysis of wind-induced noise in seismological recordings: approaches to present wind-induced noise as a function of wind speed and wind direction. Pure Appl Geophys 174:1453–1470. https://doi.org/10.1007/s00024-017-1477-2
- 31. McNamara DE, Boaz R (2019) Visualization of the Seismic Ambient Noise Spectrum. In: Nakata N, Gualtieri L, Fichtner A (Eds) Seismic Ambient Noise. Cambridge University Press, 978–1–108–41708–2
- 32. Meng H, Ben-Zion Y (2018) Characteristics of airplanes and helicopters recorded by a dense seismic array near Anza California. J Geophys Res Solid Earth 123:4783–4797. https://doi.org/10.1029/2017JB015240
- 33. Meng H, Ben-Zion Y, Johnson CW (2019) Detection of random noise and anatomy of continuous seismic waveforms in dense array data near Anza California. Geophys J Int 219:1463–1473. https://doi.org/10.1093/gji/ggz349
- 34. Naderyan V, Hickey CJ, Raspet R (2016) Wind-induced ground motion. J Geophys Res Solid Earth 121:917–930. https://doi.org/10.1002/2015JB012478
- 35. Okada H (2003) The microtremor survey method. Society of Exploration Geophysicists, Geophyisical Monograph Serires, p 135
- 36. Picozzi M, Parolai S, Bindi D (2010) Deblurring of frequency-wavenumber images from small-scale seismic arrays. Geophys J Int 181:357–368. https://doi.org/10.1111/j.1365-246X.2009.04471.x
- 37. Ritter JRR, Groos J (2007) Der Orkan Kyrill ließ auch den Boden erzittern. Spektrum der Wissenschaft, März 2007, S. 19. Spektrum der Wissenschaft Verlagsgesellschaft mbH, Heidelberg, Deutschland
- 38. Schweitzer J, Fyen J, Mykkeltveit S, Gibbons SJ, Pirli M, Kühn D, Kværna T (2012) Seismic arrays new manual of seismological observatory practice 2 (NMSOP2) 6 mb. Deutsch GeoForschungsZentrum GFZ. https://doi.org/10.2312/GFZ.NMSOP-2_CH9
- 39. SSN (2021) Universidad Nacional Autónoma de México, Instituto de Geofísica, Servicio Sismológico Nacional, México. http://www.ssn.unam.mx
- 40. Tanimoto T, Valovcin A (2016) Existence of the threshold pressure for seismic excitation by atmospheric disturbances: critical pressure for seismic excitation. Geophys Res Lett 43:11202–11208. https://doi.org/10.1002/2016GL070858
- 41. Wathelet M, Jongmans D, Ohrnberger M, Bonnefoy-Claudet S (2008) Array performances for ambient vibrations on a shallow structure and consequences over V s inversion. J Seismol 12:1–19. https://doi.org/10.1007/s10950-007-9067-x
- 42. Zürn W, Meurers B (2009) Clear evidence for the sign-reversal of the pressure admittance to gravity near 3mHz. J Geodyn 48:371–377. https://doi.org/10.1016/j.jog.2009.09.040
- 43. Zürn W, Widmer R (1995) On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys Res Lett 22:3537–3540. https://doi.org/10.1029/95GL03369
- 44. Zürn W, Wielandt E (2007) On the minimum of vertical seismic noise near 3 mHz. Geophys J Int 168:647–658. https://doi.org/10.1111/j.1365-246X.2006.03189.x
- 45. Zürn W, Exß J, Steffen H, Kroner C, Jahr T, Westerhaus M (2007) On reduction of long-period horizontal seismic noise using local barometric pressure. Geophys J Int 171:780–796. https://doi.org/10.1111/j.1365-246X.2007.03553.x
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b6bed49-3e0b-424b-b630-569179047c0a