PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Spontaneous Oxidation Processes of Zero-valent Iron and Electrocoagulation for Reactive Black 5 Removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie procesów samorzutnego utleniania żelaza na zerowym stopniu utlenienia (ZVI) oraz elektrokoagulacji (EC) w usuwaniu Reactive Black 5
Języki publikacji
EN
Abstrakty
EN
Two methods of Reactive Black 5 dye removal were compared in this work, namely electrocoagulation (EC) and one based on spontaneous electrochemical oxidation of zero-valent iron (ZVI). Both methods are based on electrode processes and the sorption process and allow to achieve a similar effectiveness of dye removal. In the case of ZVI, however, a longer contact time or a greater surface area of the electrodes applied is necessary. In turn, the ZVI enables to conduct the processes of dye removal with no requirement for an external source of electric current (lower exploitation inputs). The study demonstrated that the application of both the ZVI method and EC is especially advisable in the case of lower initial concentrations of dye in the solution, i.e. the higher the concentration, the lower the contribution of electrode processes in dye removal from the solution and the greater the contribution of sorption processes.
PL
W ramach niniejszej pracy porównano dwie metody usuwania barwnika Reactive Black 5. Metodę elektrokoagulacji (EC), oraz metodę opartą na samorzutnym elektrochemicznym utlenianiu żelaza na 0 stopniu utlenienia (ZVI). Obie metody wykorzystują procesy elektrodowe oraz procesy sorpcji, umożliwiając uzyskanie podobnej efektywność usuwania barwnika. W przypadku ZVI wymagany jest jednak dłuższy czas kontaktu, lub większa powierzchnia zastosowanych elektrod. ZVI umożliwia jednak przeprowadzenie procesów usuwania barwy, bez konieczności stosowania zewnętrznego źródła prądu (mniejsze nakłady eksploatacyjne). Badania wykazały, że zastosowanie zarówno metody ZVI i EC ma szczególne uzasadnienie w przypadku niższych stężeń początkowych barwnika w roztworze. Im wyższe stężenie, tym udział procesów elektrodowych w usuwaniu barwy roztworu jest mniejszy a przewagę zyskują procesy sorpcji.
Rocznik
Strony
121--128
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environmental Engineering 10-701 Olsztyn, ul. Warszawska 117
  • University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environmental Engineering 10-701 Olsztyn, ul. Warszawska 117
autor
  • University of Warmia and Mazury in Olsztyn, Faculty of Environmental Sciences, Department of Environmental Engineering 10-701 Olsztyn, ul. Warszawska 117
Bibliografia
  • 1. Filipkowska U. Description of the Adsorption and Desorption of Black 5 onto Chitin and Chitosan - Isotherm Equations. Fibres and Textiles in Eastern Europe 2010;18, 5(82):105-9.
  • 2. Daneshvar N, Oladegaragoze A, Djafarzadeh N. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials 2006;129:116-22.
  • 3. Filipkowska U, Jozwiak T. Application of chemically-cross-linked chitosan for the removal of Reactive Black 5 and Reactive Yellow 84 dyes from aqueous solutions. Journal of Polymer Engineering 2013;33:735-47.
  • 4. Chafi M, Gourich B, Essadki A, Vial C, Fabregat A. Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination 2011;281:285-92.
  • 5. Choudhary G., Human health perspectives on environmental exposure to benzidine: a review. Chemosphere 1996;32(2):267-91
  • 6. Chen, H., Recent advances in azo dye degrading enzyme research. Curr. Protein. Pept. Sc. 2006;7:101-111
  • 7. Padhi B S. Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation, Int. J. Environ. Sci. 2012;3:940-955
  • 8. Daneshvar N, Ashassi-Sorkhabi H, Tizpar A. Decolorization of orange II by electrocoagulation method. Separation and Purification Technology 2003;31:153-62.
  • 9. Yao T, Guo S, Zeng C, Wang C, Zhang L. Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres. Journal of Hazardous Materials 2015;292:90-7.
  • 10. Filipkowska U, Rodziewicz J, Moczkowska I. Basic Violet 10 Dye Removal from Water Solutions onto Zeolite. Rocznik Ochrona Srodowiska 2010;12:747-60.
  • 11. Buzzini A, Patrizzi L, Motheo A, Pires E. Preliminary evaluation of the electrochemical and chemical coagulation processes in the post-treatment of effluent from an up flow anaerobic sludge blanket (UASB) reactor. Journal of Environmental Management 2007;85:847-57.
  • 12. Irdemez S, Demircioglu N, Yidiz Y, Bingul Z. The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes. Separation and Purification Technology 2006;52:218-23.
  • 13. Noubactep C, Schoner A. Metallic iron for environmental remediation: Learning from electrocoagulation. Journal of Hazardous Materials 2010;175:1075-80.
  • 14. Wysocka I. A Comparative Study of Metals Solubilization and Electrocoagulation Methods' Effectiveness in Orthophosphate Removal from Synthetic Wastewater. Polish Journal of Environmental Studies 2013;22:945-9.
  • 15. Zongo I, Leclerc J, Maiga H, Wethe J, Lapicque F. Removal of hexavalent chromium from industrial wastewater by electrocoagulation: A comprehensive comparison of aluminium and iron electrodes. Separation and Purification Technology 2009;66:159-66.
  • 16. Wysocka I, Kisielewska M, Rynkiewicz M, Konopka S. Orthophosphates Removal from Synthetic Neutral and Alkaline Wastewater Using the Electrocoagulation and the Metal Dissolution Methods. Rocznik Ochrona Srodowiska 2013;15:2725-37.
  • 17. Al-Shannag M, Al-Qodah Z, Bani-Melhem K, Qtaishat M, Alkasrawi M. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal 2015;260:749-56.
  • 18. He Y, Gao J, Feng F, Liu C, Peng Y, Wang S. The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron. Chemical Engineering Journal 2012;179:8-18.
  • 19. Zongo I, Maiga A, Wethe J, Valentin G, Leclerc J, Paternotte G, Lapicque F. Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: Compared variations of COD levels, turbidity and absorbance. Journal of Hazardous Materials 2009;169:70-6.
  • 20. Wysocka I, Krzemieniewski M. The influence of the metal dissolution process on the final effect of phosphorus compounds removal from treated sewage. Polish Journal of Environmental Studies 2008;17 (3A):596-600.
  • 21. Wysocka I, Krzemieniewski M. Effect of phosphorus removal with the method of metal solubilisation on the quality of treated wastewater. Ochrona Środowiska 2004;26 (4):31-6.
  • 22. Peng C, Korshin G, Valentine R, Hill A, Friedman M, Reiber S. Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems. Water Research 2010;44:4570-80.
  • 23. Sarin P, Snoeyink V, Lytle D, Kriven W. Iron corrosion scales: Model for scale growth, iron release, and colored water formation. Journal of Environmental Engineering-Asce 2004;130:364-73.
  • 24. Tang Z, Hong S, Xiao W, Taylor J. Characteristics of iron corrosion scales established under blending of ground, surface, and saline waters and their impacts on iron release in the pipe distribution system. Corrosion Science 2006;48:322-42.
  • 25. Dash B, Chaudhari S. Electrochemical denitrificaton of simulated ground water. Water Research 2005;39:4065-72.
  • 26. Deb T, Majumdar S. Removal of Reactive Dyes from Textile Wastewater by Electrocoagulation Process: An Effective and Clean Approach. International Journal of Environment and Bioenergy 2013;6 (2):96-116.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b6599f8-24d5-4b72-9cf7-09febe99c724
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.