Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
805--841
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
- Carnegie Mellon University Department of Mathematical Sciences 5000 Forbes Avenue, Pittsburgh, PA 15289, USA Hoisington Seth
autor
- University of Virginia Department of Mathematics Charlottesville, VA 22903, USA
autor
- University of Tennessee at Chattanooga Department of Mathematics (Dept. 6956) 615 McCallie Ave., Chattanooga, TN 37403, USA
autor
- Rice University Department of Mathematics 6100 Main Street, Houston, TX 77005, USA
Bibliografia
- 1] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, Volume II, Pitman, Boston, 1981.
- [2] A.Yu. Anan’eva, V.S. Budyka, On the spectral theory of the Bessel operator on a finite interval and the half-line, Diff. Eq. 52 (2016), 1517-1522.
- [3] A.Yu. Ananieva, V.S. Budyika, To the spectral theory of the Bessel operator on finite interval and half-line, J. Math. Sci. 211 (2015), 624-645.
- [4] Y. Arlinskii, E. Tsekanovskii, M. Krein’s research on semi-bounded operators, its contemporary developments, and applications, [in:] Modern analysis and applications. The Mark Krein Centenary Conference. Vol. 1: Operator theory and related topics, V.M. Adamyan et al. (eds.), Oper. Theory Adv. Appl., Vol. 190, Birkhäuser Verlag, Basel, 2009, pp. 65-112.
- [5] M. S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, and G. Teschl, A survey on the Krein-von Neumann extension, the corresponding abstract buckling problem, and Weyl-type spectral asymptotics for perturbed Krein Laplacians in non smooth domains, [in:] Mathematical Physics, Spectral Theory and Stochastic Analysis, M. Demuth and W. Kirsch (eds.), Oper. Theory Adv. Appl., Vol. 232, Birkhäuser, Springer, Basel, 2013, pp. 1-106.
- [6] S. Clark, F. Gesztesy, R. Nichols, M. Zinchenko, Boundary data maps and Krein’s resol¬vent formula for Sturm-Liouvil le operators on a finite interval, Op. Mat. 8 (2014), 1-71.
- [7] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Weyl-Titchmarsh theory for Sturm-Liouvil le operators with distributional potentials, Opuscula Math. 33 (2013), 467-563.
- [8] W.N. Everitt, L. Markus, Boundary Value Problems and Symplectic Algebra for Or¬dinary Differential and Quasi-Differential Operators, American Mathematical Society, Providence, RI, 1999.
- [9] W.N. Everitt, A. Zettl, Generalized symmetric ordinary differential expressions I: the general theory, Nieuw Arch. Wisk. 27 (1979), no. 3, 363-397.
- [10] K. Friedrichs, Spektraltheoriehalbbeschränkter Operatoren und Anwendungaufdie Spek¬tralzerlegung von Differentialoperatoren, Math. Ann. 109 (1934), 465-487 [in German].
- [11] G. Fucci, F. Gesztesy, K. Kirsten, L.L. Littlejohn, R. Nichols, J. Stanfill, The Krein-von Neumann extension revisited, Appl. Anal. (2021), 25 p.
- [12] F. Gesztesy, L. Littlejohn, R. Nichols, On self-adjoint boundary conditions for singular Sturm-Liouvil le operators bounded from below, J. Diff. Eq. 269 (2020), 6448-6491.
- [13] A. Goriunov, V. Mikhailets, K. Pankrashkin, Formal ly self-adjoint quasi-differential operators and boundary value problems, Electron. J. Diff. Equ. 2013 (2013), no. 101, 1-16.
- [14] Y.I. Granovskyi, L.L. Oridoroga, Krein-von Neumann extension of an even order differential operator on a finite interval, Opuscula Math. 38 (2018), no. 5, 681-698.
- [15] Y.I. Granovskyi, L.L. Oridoroga, Krein extension of an even-order differential operator, Differential Equations 54 (2018), no. 4, 551-556.
- [16] T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980.
- [17] D.E. Knuth, The Art of Computer Programming. Vol. 1. Fundamental algorithms, Third edition, Addison-Wesley, Reading, MA, 1997.
- [18] M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transfor¬mations and its applications. I, Mat. Sbornik 20 (1947), 431-495 [in Russian].
- [19] M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transfor¬mations and its applications. II, Mat. Sbornik 21 (1947), 365-404 [in Russian].
- [20] A. Lunyov, Spectral functions of the simplest even order ordinary differential operator, Methods Funct. Anal. Topology 19 (2013), no. 4, 319-326.
- [21] M. Marletta, A. Zettl, The Friedrichs extension of singular differential operators, J. Diffe¬rential Equations 160 (2000), no. 2, 404-421.
- [22] M. Möller, A. Zettl, Semi-boundedness of ordinary differential operators, J. Differential Equations 115 (1995), 24-49.
- [23] M. Möller, A. Zettl, Symmetric differential operators and their Friedrichs extension, J. Differential Equations 115 (1995) 50-69.
- [24] M.A. Naimark, Linear Partial Differential Operators, Part II: Linear Differential Opera¬tors in Hilbert Space, Transl. by E.R. Dawson, Engl. translation edited by W.N. Everitt, F. Ungar Publishing, New York, 1968.
- [25] J. von Neumann, Al lgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1930), 49-131 [in German].
- [26] H.-D. Niessen, A. Zettl, The Friedrichs extension of regular ordinary differential operators, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), no. 3-4, 229-236.
- [27] F.S. Rofe-Beketov, A.M. Kholkin, Spectral Analysis of Differential Operators: Inter¬play Between Spectral And Oscil latory Properties, Translated from the Russian by O. Milatovic and revised by the authors. With a foreword by V.A. Marchenko. World Scientific Monograph Series in Mathematics 7, World Scientific Publishing Company, Hackensack, 2005.
- [28] K. Schmüdgen, Unbounded Self-Adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, Springer, New York, 2012.
- [29] D. Shin, On quasi-differential operators in Hilbert space, Doklad. Akad. Nauk. SSSR 18 (1938), 523-526.
- [30] G. Teschl, Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators, 2nd ed., Graduate Studies in Math., Vol. 157, Amer. Math. Soc., RI, 2014.
- [31] S. Yao, J. Sun, Jiong, A. Zettl, The Sturm-Liouville Friedrichs extension, Appl. Math. 60 (2015), no. 3, 299-320.
- [32] A. Zettl, Formal ly self-adjoint quasi-differential operators, Rocky Mountain J. Math. 5 (1975), no. 3, 453-474.
- [33] A. Zettl, Sturm-Liouvil le Theory, Mathematical Surveys and Monographs, Vol. 121, Amer. Math. Soc., Providence, RI, 2005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b65066b-226d-4bbe-bdca-cb31310da077