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Abstract. We characterize by boundary conditions the Krein–von Neumann extension of
a strictly positive minimal operator corresponding to a regular even order quasi-differential
expression of Shin–Zettl type. The characterization is stated in terms of a specially chosen
basis for the kernel of the maximal operator and employs a description of the Friedrichs
extension due to Möller and Zettl.
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1. INTRODUCTION

A linear operator S acting in a separable Hilbert space (H , ⟨ · , · ⟩H ) with dense
domain dom(S) is said to be nonnegative if

⟨u, Su⟩H ≥ 0, u ∈ dom(S). (1.1)

If S satisfies the stronger condition that for some ε ∈ (0,∞),

⟨u, Su⟩H ≥ ε⟨u, u⟩H , u ∈ dom(S), (1.2)

then S is said to be strictly positive and one writes S ≥ εIH , where IH denotes
the identity operator in H . The condition (1.1) implies that S is symmetric,

⟨u, Sv⟩H = ⟨Su, v⟩H , u, v ∈ dom(S), (1.3)

and that
dim(ker(S∗ − zIH )) ∈ N0 ∪ {∞} (1.4)
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is constant with respect to z ∈ C\[0,∞). Here S∗ denotes the Hilbert space adjoint of S.
(If S ≥ εIH for some ε ∈ (0,∞), then the dimension (1.4) is constant with respect
to z ∈ C\[ε,∞).) In particular, the deficiency indices of S are equal, and S possesses
a self-adjoint extension by von Neumann’s theory of self-adjoint extensions [25]. We
shall assume that S is unbounded with nonzero deficiency indices. Otherwise, S is
essentially self-adjoint, meaning the closure of S, which we denote by S, is the only
self-adjoint extension of S. In addition, since the self-adjoint extensions of S and those
of S are the same, we shall henceforth assume that the operator S is closed.

If S is nonnegative, then its Friedrichs extension SF is constructed in a canonical
way using form methods – a classic construction that goes back to the 1934 work
of Friedrichs [10]. For details of the construction, we refer to [16, Section VI.2.3],
[28, Section 10.4], and [30, Theorem 2.13]. One important characteristic of the Friedrichs
extension is that SF has the same lower bound as the symmetric operator S (see
[28, Theorem 10.17(i)]). Therefore, SF is a nonnegative self-adjoint extension of S.

In his seminal work on nonnegative self-adjoint extensions, M.G. Krein [18, 19]
showed that, among all nonnegative self-adjoint extensions of S, there exist two
which are the largest and smallest – in the sense of order between nonnega-
tive self-adjoint operators – such extensions of S. We recall that if A and B are
nonnegative self-adjoint operators in (H , ⟨ · , · ⟩H ), then A ≤ B if (see, e.g., [28, Sec-
tion 10.3]) {

dom(B1/2) ⊆ dom(A1/2),∥∥A1/2u
∥∥

H
≤
∥∥B1/2u

∥∥
H
, u ∈ dom(B1/2),

(1.5)

where ∥ · ∥H denotes the norm induced by ⟨ · , · ⟩H and C1/2 is the unique nonnegative
square root of the nonnegative self-adjoint operator C ∈ {A,B}. The condition in (1.5)
is equivalent to (see, e.g., [28, Corollary 10.13])

〈
u, (B + aIH )−1u

〉
H

≤
〈
u, (A+ aIH )−1u

〉
H
, u ∈ H , a ∈ (0,∞). (1.6)

The largest nonnegative self-adjoint extension of S is the Friedrichs extension SF, and
the smallest nonnegative self-adjoint extension of S, which we shall denote by SK,
is known as the Krein–von Neumann extension. Krein’s result may be summarized as
follows.
Theorem 1.1 ([18]). If S is a densely defined, closed, nonnegative operator in
a separable Hilbert space (H , ⟨ · , · ⟩H ), then there exist two nonnegative self-adjoint
extensions, SF and SK, of S which are the largest and smallest, respectively, nonnegative
self-adjoint extensions of S. A nonnegative self-adjoint operator S′ is a self-adjoint
extension of S if and only if

SK ≤ S′ ≤ SF. (1.7)
The operators SF and SK are uniquely determined by (1.7). If, in addition, S ≥ εIH
for some ε ∈ (0,∞), then SF ≥ εIH and

dom(SF) = dom(S) ∔ (SF)−1 ker(S∗), (1.8)
dom(SK) = dom(S) ∔ ker(S∗), (1.9)

where ∔ denotes the direct sum of subspaces in H .
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For completeness, we recall the notion of relatively prime self-adjoint extensions
(see [1, p. 110]).

Definition 1.2. If S is a densely defined symmetric operator and T , T ′ are two
self-adjoint extensions of S, then the maximal common part of T and T ′ is the operator
CT,T ′ defined by

CT,T ′y = Ty, y ∈ dom(CT,T ′) = {u ∈ dom(T ) ∩ dom(T ′) | Tu = T ′u}. (1.10)

In addition, T and T ′ are relatively prime with respect to S if CT,T ′ = S; that is, if

dom(T ) ∩ dom(T ′) = dom(S). (1.11)

Remark 1.3. If S is a densely defined, closed, strictly positive operator in a separable
Hilbert space (H , ⟨ · , · ⟩H ), then its Krein–von Neumann extension SK and any
strictly positive self-adjoint extension of S are relatively prime with respect to S. This
fact readily follows from (1.9). In particular, SK and the Friedrichs extension SF of S
are relatively prime with respect to S.

For additional details, especially in connection with the Krein–von Neumann
extension, we refer to the surveys [4] and [5].

When S is an ordinary differential operator, its self-adjoint extensions are usually
characterized in terms of appropriate boundary conditions at the endpoints of the
underlying interval. Therefore, it is natural to try to determine the boundary conditions
that characterize SF and SK.

Considerable attention has been given to the problem of identifying the boundary
conditions that characterize SF; see, for example, [21–23,26, 31] and [33, Section 10.5],
to name only a few. In particular, when S = HZ,min, where HZ,min is the minimal
operator generated by a regular even order Shin–Zettl quasi-differential expression τ

Z

(with matrix-valued coefficients) on the interval [a, b], Möller and Zettl [22] proved
that HZ,min is bounded from below if the leading coefficient of τ

Z
is positive definite

almost everywhere. In this case, if τ
Z

is of order 2N (for some N ∈ N), then Möller
and Zettl showed in [22, Theorem 8.1] that the Friedrichs extension HZ,F of HZ,min
is characterized by boundary conditions on the first N − 1 quasi-derivatives at the
interval endpoints:

y[j−1](a) = y[j−1](b) = 0, 1 ≤ j ≤ N. (1.12)

This characterization extends an earlier result by Niessen and Zettl (see [26, Theo-
rem 2.1]). The quasi-differential expression τ

Z
studied by Möller and Zettl is of a very

general form and includes, as a special case, the classic quasi-differential expressions
studied by Naimark [24] and Rofe–Beketov–Kholkin [27].

In recent years, more attention has been given to the problem of determining the
boundary conditions that characterize SK. The authors of [6] considered a regular
three-coefficient Sturm–Liouville differential expression τp,q,r acting according to

τp,q,rf = 1
r

[
−(f [1])′ + qf

]
on [a, b], (1.13)
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where f [1] = pf ′ denotes the quasi-derivative of f , p > 0, r > 0, q is real-valued
almost everywhere on the interval [a, b], and p−1, q, r are integrable on [a, b]. Assuming
the minimal operator Hp,q,r,min generated by τp,q,r is strictly positive, the Krein–von
Neumann extension of Hp,q,r,min was characterized in terms of a specially chosen
basis for the kernel of (Hp,q,r,min)∗. Specifically, taking as a basis for the kernel of
(Hp,q,r,min)∗ the set {u1, u2} determined by

u1(a) = u2(b) = 1, u1(b) = u2(a) = 0, (1.14)

it was shown in [6, Example 3.3] that the Krein–von Neumann extension of Hp,q,r,min
corresponds to coupled boundary conditions of the form:

(
f(b)
f [1](b)

)
= 1
u

[1]
2 (a)

(
−u[1]

1 (a) 1
u

[1]
2 (a)u[1]

1 (b) − u
[1]
2 (b)u[1]

1 (a) u
[1]
2 (b)

)(
f(a)
f [1](a)

)
. (1.15)

In [7], the characterization in (1.14)–(1.15) was extended to the generalized
four-coefficient Sturm–Liouville differential expression τp,q,r,s acting according to

τp,q,r,sf = 1
r

[
−(f [1])′ + sf [1] + qf

]
on [a, b], (1.16)

where in addition to the assumptions imposed on p, q, and r above, the fourth
coefficient s is assumed to be real-valued almost everywhere and integrable on [a, b]
and the generalized quasi-derivative takes the form f [1] = p[f ′ + sf ]. Assuming the
minimal operator Hp,q,r,s,min generated by τp,q,r,s is strictly positive, the Krein–von
Neumann extension of Hp,q,r,s,min is characterized in [7, Theorem 12.3] by (1.14)–(1.15).
A result analogous to (1.14)–(1.15) was shown to hold for singular three-coefficient
Sturm–Liouville operators in [11, Theorem 3.5(ii)], provided one replaces the values of
the functions and their quasi-derivatives at the endpoints by appropriate generalized
boundary values (see [11, Theorem 2.12] and [12, Theorem 3.11]). The Krein–von
Neumann extension of the minimal operator associated with the pure differential
expression τ2N

of order 2N (where N ∈ N is fixed) acting according to

τ2N
f = (−1)N d2N

dx2N
f on [a, b] (1.17)

was characterized by Granovskyi and Oridoroga in [14] (see also [15]). Using an elegant
argument based on Taylor polynomials, it is shown in [14, Theorem 3.1(i)] that the
Krein–von Neumann extension of the minimal operator H2N,min corresponding to
(1.17) is characterized by the boundary conditions:




f(b)
f (1)(b)

...
f (2N−1)(b)


 = TK




f(a)
f (1)(a)

...
f (2N−1)(a)


 , (1.18)
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where T is the Toeplitz upper triangular matrix given by

TK =
(

(b− a)k−j

(k − j)!

)2N

j,k=1
. (1.19)

Lunyov [20] considered the expression τ2N
in (1.17) on the interval [0,∞) and used

boundary triplet techniques to show that the Krein–von Neumann extension of the
minimal operator is characterized by the boundary conditions (see [20, Theorem 2])

f (j)(0) = 0, N ≤ j ≤ 2N − 1. (1.20)

Finally, Ananieva and Budyika [3, Proposition 5.3, part (ii)] (see also [2]) used
boundary triplet techniques to characterize the Krein–von Neumann extension corre-
sponding to the Bessel differential expression − d2

dx2 +
(
ν2 − 1

4
)
x−2, with the parameter

ν ∈ [0, 1)\{1/2}, on the interval (0,∞).
In this paper, we characterize by boundary conditions the Krein–von Neu-

mann extension of the minimal operator HZ,min generated by a regular Shin–Zettl
quasi-differential expression τ

Z
of order 2N on the interval [a, b] with M × M

matrix-valued coefficients, assuming that the leading coefficient of τ
Z

is positive
definite almost everywhere on [a, b] and that HZ,min is strictly positive. Our approach
is similar in spirit to [6,7], and [11], in that we also use a specially chosen basis for the
kernel of (HZ,min)∗ to formulate the boundary conditions for the Krein–von Neumann
extension. The characterization of the Friedrichs extension due to Möller and Zettl
plays a key role in our construction.

We briefly summarize the contents of the remaining sections of this paper. In Sec-
tion 2, we recall the basic background on Shin–Zettl quasi-differential expressions and
their associated minimal and maximal operators. In Section 3, we introduce a special
basis for the kernel of (HZ,min)∗ in Lemma 3.1 and state and prove our main result –
a characterization of the Krein–von Neumann extension of HZ,min – in Theorem 3.3.
We explore an equivalent characterization in Proposition 3.4. Finally, in Section 4,
we consider applications of our main theorem to generalized four-coefficient regular
Sturm–Liouville expressions with matrix-valued coefficients, a simple fourth-order
differential expression, and the pure differential expression τ2N

in (1.17).
Notation: If X is a set and m,n ∈ N, then Xm×n denotes the set of all m×n matrices
with entries in X. Thus, G ∈ Xm×n if and only if G = (Gj,k)m,n

j=1,k=1, where Gj,k ∈ X
for all 1 ≤ j ≤ m and 1 ≤ k ≤ n. In the special case when n = 1, we will write Xm

instead of Xm×1. For a fixed compact interval [a, b] in R, AC([a, b]) denotes the set of
all complex-valued functions that are absolutely continuous on [a, b], L([a, b]) denotes
the set of all (equivalence classes of) Lebesgue measurable functions f : [a, b] → C,
and L1([a, b]) denotes the set of all f ∈ L([a, b]) such that

∫
[a,b] |f | < ∞. Here, and

throughout, the integral is taken with respect to Lebesgue measure on R, and “a.e.” is
used as an abbreviation for the phrase “almost everywhere with respect to Lebesgue
measure.” If z ∈ C, then z denotes the complex conjugate of z. If m ∈ N, then 0m and
Im denote the zero and identity matrices, respectively, in Cm×m. If V is a vector space,
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then dim(V) denotes the dimension of V. If T : V → V is a linear transformation on
the vector space V , then ker(T ) denotes the kernel (i.e., null space) of T . Finally, Z≥0
denotes the set of nonnegative integers, and “:=” means “is defined to be equal to”.

2. EVEN ORDER REGULAR QUASI-DIFFERENTIAL OPERATORS

We begin by recalling several basic facts on even order regular quasi-differential
operators. This material may be found in many sources; we refer to [8, Sections I.2, II,
& IV] and [9, 13,22, 29, 32] for detailed treatments, including proofs. In fact, [22] and
[23] contain all of the background required here. To construct an even order regular
quasi-differential expression of Shin–Zettl type, we introduce the following hypothesis
which is assumed throughout Sections 2 and 3.
Hypothesis 2.1. M,N ∈ N are fixed, [a, b] is a compact subinterval in R,
W ∈ L1([a, b])M×M is positive definite a.e. on [a, b], and

Z = (Zj,k)2N
j,k=1 ∈

[
L1([a, b])M×M

]2N×2N

satisfies the following conditions:
(A1) Zj,j+1 is invertible a.e. on [a, b] for 1 ≤ j ≤ 2N − 1,
(A2) Zj,k = 0M a.e. on [a, b] for 2 ≤ j + 1 < k ≤ 2N ,
(A3) Z = JM,2NZ

∗JM,2N , where

JM,2N =
(
(−1)jδj,2N+1−kIM

)2N

j,k=1 ∈
[
CM×M

]2N×2N
. (2.1)

Assuming Hypothesis 2.1, the quasi-derivatives generated by Z are defined as
follows. Set

y
[0]
Z := y, y ∈ D

[0]
Z ([a, b]) := L([a, b])M , (2.2)

and define y[j]
Z for 1 ≤ j ≤ 2N inductively by

y
[j]
Z := Z−1

j,j+1

[
(
y

[j−1]
Z

)′ −
j∑

k=1
Zj,ky

[k−1]
Z

]
,

y ∈ D
[j]
Z ([a, b]) :=

{
g ∈ D

[j−1]
Z ([a, b])

∣∣ g[j−1]
Z ∈ AC([a, b])M

}
,

(2.3)

where Z2N,2N+1 := IM a.e. on [a, b] and the prime denotes differentiation with respect
to the independent variable on [a, b].
Notational convention: Since Z is fixed, for ease of notation, we shall, from this
point on, simply write y[j] for the jth quasi-derivative of y, instead of y[j]

Z .
The quasi-differential expression τ

Z
generated by Z is defined by

τ
Z
y := (−1)NW−1y[2N ], y ∈ D

[2N ]
Z ([a, b]), (2.4)

and ZN,N+1 is called the leading coefficient of τ
Z

.
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Introducing the Lagrange bracket [ · , · ]Z by

[f, g]Z = (−1)N
2N−1∑

j=0
(−1)1−j

(
g[2N−j−1]

)∗
f [j], f, g ∈ D

[2N ]
Z ([a, b]), (2.5)

where ∗ denotes the Hermitian transpose of a matrix, it follows that [f, g]Z ∈
AC([a, b])M for all f, g ∈ D

[2N ]
Z ([a, b]) and the Lagrange identity holds in the following

form.
Lemma 2.2 (Lagrange identity, [22, Lemma 3.3]). Assume Hypothesis 2.1. If
f, g ∈ D

[2N ]
Z ([a, b]), then

g∗W (τ
Z
f) − (τ

Z
g)∗Wf = [f, g]′Z a.e. on [a, b]. (2.6)

For later use, it is convenient to extend the definition of the Lagrange bracket to
matrix-valued functions of the form F : [a, b] → CM×M with columns F1, . . . , FM in
D

[2N ]
Z ([a, b]). For such F , we define

F [ℓ] :=
(
F

[ℓ]
1

∣∣∣F [ℓ]
2

∣∣∣ · · ·
∣∣∣F [ℓ]

M

)
, 0 ≤ ℓ ≤ 2N, (2.7)

and
τ

Z
F := (−1)NW−1F [2N ]. (2.8)

The definitions in (2.7) and (2.8) imply F [ℓ], 0 ≤ ℓ ≤ 2N , is an M ×M matrix-valued
function and

τ
Z
F =

(
τ

Z
F1
∣∣ τ

Z
F2
∣∣ · · ·

∣∣ τ
Z
FM

)
. (2.9)

If F,G : [a, b] → CM×M are functions with columns F1, . . . , FM and G1, . . . , GM ,
respectively, in D

[2N ]
Z ([a, b]), then we define their Lagrange bracket by

[F,G]Z := (−1)N
2N−1∑

j=0
(−1)1−j

(
G[2N−j−1]

)∗
F [j], (2.10)

and obtain a Lagrange identity similar to Lemma 2.2.
Lemma 2.3. Assume Hypothesis 2.1. If F,G : [a, b] → CM×M are functions with
columns F1, . . . , FM and G1, . . . , GM , respectively, in D[2N ]

Z ([a, b]), then

G∗W (τ
Z
F ) − (τ

Z
G)∗

WF = [F,G]′Z . (2.11)

Proof. By (2.10),

[F,G]Z = (−1)N
2N−1∑

ℓ=0
(−1)1−ℓ

((
G

[2N−ℓ−1]
j

)∗
F

[ℓ]
k

)M

j,k=1

=
(

(−1)N
2N−1∑

ℓ=0
(−1)1−ℓ

(
G

[2N−ℓ−1]
j

)∗
F

[ℓ]
k

)M

j,k=1

=
(
[Fk, Gj ]Z

)M

j,k=1. (2.12)
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Therefore, taking the derivative componentwise, we compute:

[F,G]′Z = ([Fk, Gj ]′Z)M

j,k=1

=
(
G∗

jW (τ
Z
Fk) − (τ

Z
Gj)∗

WFk

)M

j,k=1

= G∗W (τ
Z
F ) − (τ

Z
G)∗WF (2.13)

by linearity, Lemma 2.2, (2.8), and (2.9).

In order to define the maximal and minimal operators associated to τ
Z

, we introduce
the Hilbert space L2

W ([a, b]) of all (equivalence classes of) f ∈ L([a, b])M for which
f∗Wf ∈ L1([a, b]) equipped with the inner product

⟨f, g⟩W :=
∫

[a,b]

g∗Wf, f, g ∈ L2
W ([a, b]). (2.14)

We shall denote the identity operator on L2
W ([a, b]) by IW .

The maximal operator HZ,max associated to τ
Z

is defined by

HZ,maxf = τ
Z
f, (2.15)

f ∈ dom(HZ,max) =
{
y ∈ L2

W ([a, b])
∣∣ y ∈ D

[2N ]
Z ([a, b]), τ

Z
y ∈ L2

W ([a, b])
}
,

and the minimal operator HZ,min associated to τ
Z

is defined by

HZ,minf = τ
Z
f, (2.16)

f ∈ dom(HZ,min) =
{
y ∈ dom(HZ,max)

∣∣ y[j−1](c) = 0, c ∈ {a, b}, 1 ≤ j ≤ 2N
}
.

One can show (see, e.g., [22, Theorem 4.2]) that HZ,max and HZ,min are densely defined
and satisfy the following adjoint relations:

(HZ,min)∗ = HZ,max and (HZ,max)∗ = HZ,min. (2.17)

The equalities in (2.17) imply that HZ,max and HZ,min are closed. Moreover, an el-
ementary calculation using the Lagrange identity and the boundary conditions for
functions in dom(HZ,min) reveals that HZ,min is symmetric. Since τ

Z
is regular on [a, b],

the deficiency indices of HZ,min satisfy (see [23, Equation (2.2)])

dim(ker((HZ,min)∗ ± iIW )) = dim(ker(HZ,max ± iIW )) = 2MN. (2.18)

Hence, HZ,min has a self-adjoint extension. If H is a self-adjoint extension of HZ,min,
then (2.17) implies

HZ,min ⊆ H ⊆ HZ,max, (2.19)

so H is a self-adjoint restriction of HZ,max. Thus, the action of a self-adjoint extension of
HZ,min coincides with the action of HZ,max. As a consequence, a self-adjoint extension
of HZ,min is determined uniquely by its domain.
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For y ∈ dom(HZ,max), we introduce the notation:

Y (x) =




y[0](x)
y[1](x)

...
y[2N−1](x)


 , x ∈ {a, b}. (2.20)

The following theorem, which is a special case of [23, Theorem 2.4], permits one
to construct self-adjoint extensions of HZ,min by imposing boundary conditions at
the endpoints of [a, b].
Theorem 2.4 ([23, Theorem 2.4]). Assume Hypothesis 2.1 and suppose that
A,B ∈

[
CM×M

]2N×2N . The operator HZ,A,B defined by

HZ,A,Bf = HZ,maxf,

f ∈ dom(HZ,A,B) = {y ∈ dom(HZ,max) |AY (a) = BY (b)}, (2.21)

is a self-adjoint extension of HZ,min if and only if
rank(A |B) = 2MN and AJM,2NA

∗ = BJM,2NB
∗, (2.22)

where (A |B) is viewed as an element of C2MN×4MN .
Recall that HZ,min is said to be bounded from below if there exists κ ∈ R such that

⟨f,HZ,minf⟩W ≥ κ⟨f, f⟩W , f ∈ dom(HZ,min). (2.23)
Define the map Γ : dom(HZ,max) → (CM )2N by

Γu =




u[0](a)
u[1](a)

...
u[N−1](a)
u[0](b)
u[1](b)

...
u[N−1](b)




, u ∈ dom(HZ,max). (2.24)

The reason for introducing the map Γ is that HZ,min is bounded from below when
ZN,N+1 is positive definite a.e. on [a, b], and the domain of its Friedrichs extension
coincides with ker(Γ). This result is due to Möller and Zettl [22].
Theorem 2.5 ([22, Theorem 8.1]). Assume Hypothesis 2.1. If ZN,N+1 is positive defi-
nite a.e. on [a, b], then HZ,min is bounded from below, and the domain of the Friedrichs
extension HZ,F of HZ,min is

dom(HZ,F) = ker(Γ) (2.25)
=
{
y ∈ dom(HZ,max)

∣∣ y[j−1](a) = y[j−1](b) = 0, 1 ≤ j ≤ N
}
.

The characterization of HZ,F given in Theorem 2.5 will play an important role in
our characterization of the Krein–von Neumann extension in the next section.
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3. MAIN RESULTS

In this section, we assume in addition to Hypothesis 2.1 that ZN,N+1 is positive
definite a.e. on [a, b] and that the minimal operator HZ,min associated to τ

Z
is strictly

positive:
HZ,min ≥ εIW for some ε ∈ (0,∞). (3.1)

As a consequence of (3.1),

dim
(

ker
(
(HZ,min)∗ − zIW

))
= dim

(
ker(HZ,max − zIW )

)
= 2MN,

z ∈ C\[ε,∞).
(3.2)

In particular, (3.2) implies that ker(HZ,max) is a 2MN -dimensional subspace of the
Hilbert space L2

W ([a, b]). We shall characterize by boundary conditions the Krein–von
Neumann extension HZ,K of HZ,min in terms of a specially chosen basis for ker(HZ,max).
This basis is characterized in the following lemma.
Lemma 3.1. Assume Hypothesis 2.1 and suppose that ZN,N+1 is positive defi-
nite a.e. on [a, b]. If (3.1) holds, then there exists a unique basis {φj,k}2N,M

j=1,k=1 of
ker(HZ,max) such that

Γφj,k = (δj,ℓek)2N
ℓ=1, (3.3)

where {ek}M
k=1 denotes the standard basis of CM .

Proof. It suffices to show that Γ
∣∣
ker(HZ,max) is a bijection, for one may then verify that

{φj,k}2N,M
j=1,k=1 defined by

φj,k =
(

Γ
∣∣
ker(HZ,max)

)−1
(δj,ℓek)2N

ℓ=1, 1 ≤ j ≤ 2N, 1 ≤ k ≤ M, (3.4)

is a basis for ker(HZ,max) that fulfills (3.3). To prove injectivity, suppose
y ∈ ker(HZ,max) and Γy = 0. By equation (2.25), y ∈ dom(HZ,F); thus, HZ,Fy =
HZ,maxy = 0. Moreover, (3.1) implies HZ,F ≥ εIW (cf. Theorem 1.1), so that

ε⟨y, y⟩W ≤ ⟨y,HZ,Fy⟩W = 0. (3.5)

Thus, y = 0. Therefore, Γ
∣∣
ker(HZ,max) has a trivial kernel and is thus injective. Since

dim(ker(HZ,max)) = 2MN = dim
(
(CM )2N

)
, (3.6)

Γ
∣∣
ker(HZ,max) is also surjective. Therefore, we retrieve a basis {φj,k}2N,M

j=1,k=1 by (3.4),
and by injectivity of Γ

∣∣
ker(HZ,max) we also conclude that it is the unique basis for

ker(HZ,max) that satisfies (3.3).

Remark 3.2. The definition of Γ in (2.24) implies for 1 ≤ j ≤ 2N and 1 ≤ k ≤ M ,

(
Γφj,k

)
ℓ

=




φ

[ℓ−1]
j,k (a), 1 ≤ ℓ ≤ N,

φ
[ℓ−N−1]
j,k (b), N + 1 ≤ ℓ ≤ 2N,

(3.7)
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where the subscript ℓ on the left-hand side denotes the ℓth component of Γφj,k.
Therefore, (3.3) yields for 1 ≤ j ≤ 2N , 1 ≤ k ≤ M , and 1 ≤ ℓ ≤ N ,

φ
[ℓ−1]
j,k (a) = δj,ℓek and φ

[ℓ−1]
j,k (b) = δj,ℓ+Nek. (3.8)

Using the basis {φj,k}2N,M
j=1,k=1 for ker(HZ,max) prescribed in Lemma 3.1, we will

characterize the Krein–von Neumann extension HZ,K of HZ,min by boundary conditions.
In fact, we shall prove that HZ,K is of the form (2.21). That is, we shall show that
every function y ∈ dom(HZ,K) satisfies boundary conditions of the form

AKY (a) = BKY (b) (3.9)

for a pair of fixed (y-independent) matrices AK, BK ∈
[
CM×M

]2N×2N which sat-
isfy (2.22).

To determine AK and BK, we recall (1.9), which now takes the form

dom(HZ,K) = dom(HZ,min) ∔ ker (HZ,max). (3.10)

If y ∈ dom(HZ,K), then by (3.10) there exist scalars {cj,k}2N,M
j=1,k=1 ⊂ C and some

ψ ∈ dom(HZ,min) such that

y = ψ +
2N,M∑

j=1,k=1
cj,kφj,k. (3.11)

Therefore, since (2.16) implies

ψ[ℓ−1](x) = 0, 1 ≤ ℓ ≤ 2N, x ∈ {a, b}, (3.12)

we have

y[ℓ−1](x) =
2N,M∑

j=1,k=1
cj,kφ

[ℓ−1]
j,k (x), 1 ≤ ℓ ≤ N, x ∈ {a, b}. (3.13)

Letting x = a in (3.13) and applying (3.8), we obtain for 1 ≤ ℓ ≤ N :

y[ℓ−1](a) =
2N,M∑

j=1,k=1
cj,kφ

[ℓ−1]
j,k (a) =

2N,M∑

j=1,k=1
cj,kδj,ℓek =

M∑

k=1
cℓ,kek. (3.14)

Therefore, taking the kth component throughout (3.14) yields

cj,k =
(
y[j−1](a)

)
k
, 1 ≤ j ≤ N, 1 ≤ k ≤ M, (3.15)

where the subscript k on the right-hand side denotes the kth component of a vector
in CM . Similarly, letting x = b in (3.13) and applying (3.8), we obtain for 1 ≤ ℓ ≤ N :

y[ℓ−1](b) =
2N,M∑

j=1,k=1
cj,kφ

[ℓ−1]
j,k (b) =

2N,M∑

j=1,k=1
cj,kδj,ℓ+Nek =

M∑

k=1
cℓ+N,kek. (3.16)
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Therefore, taking the kth component throughout (3.16) yields

cj,k =
(
y[j−1−N ](b)

)
k
, N + 1 ≤ j ≤ 2N, 1 ≤ k ≤ M. (3.17)

Using (3.15) and (3.17), (3.11) can be recast as

y = ψ +
N,M∑

j=1,k=1

(
y[j−1](a)

)
k
φj,k +

N,M∑

j=1,k=1

(
y[j−1](b)

)
k
φj+N,k. (3.18)

In particular, (3.12) and (3.18) imply

y[ℓ−1](x) =
N,M∑

j=1,k=1

(
y[j−1](a)

)
k
φ

[ℓ−1]
j,k (x) +

N,M∑

j=1,k=1

(
y[j−1](b)

)
k
φ

[ℓ−1]
j+N,k(x),

N + 1 ≤ ℓ ≤ 2N, x ∈ {a, b}.
(3.19)

Letting x = a in (3.19) and rearranging, we obtain

−
N,M∑

j=1,k=1

(
y[j−1](a)

)
k
φ

[ℓ−1]
j,k (a) + y[ℓ−1](a) =

N,M∑

j=1,k=1

(
y[j−1](b)

)
k
φ

[ℓ−1]
j+N,k(a),

N + 1 ≤ ℓ ≤ 2N.

(3.20)

We introduce the following notation:

±φ[ℓ−1]
j =

(
±φ[ℓ−1]

j,1 ±φ[ℓ−1]
j,2 · · · ±φ[ℓ−1]

j,M

)
, 1 ≤ j, ℓ ≤ 2N. (3.21)

We view ±φ[ℓ−1]
j as M ×M matrices, instead of row vectors of column vectors, and

remark that, by (3.8), for 1 ≤ ℓ ≤ N , 1 ≤ j ≤ 2N ,

±φ[ℓ−1]
j (a) = ±δj,ℓIM and ± φ

[ℓ−1]
j (b) = ±δj−N,ℓIM . (3.22)

Using the notation in (3.21), equation (3.20) can be rewritten as

−
N∑

j=1
φ

[ℓ−1]
j (a)y[j−1](a) + y[ℓ−1](a) =

N∑

j=1
φ

[ℓ−1]
j+N (a)y[j−1](b),

N + 1 ≤ ℓ ≤ 2N.

(3.23)

In turn, equation (3.23) may be recast in terms of matrix products as follows (cf. (2.20)):
(

−φ[ℓ−1]
1 (a) · · · −φ[ℓ−1]

N (a) 0M · · · IM · · · 0M

)
Y (a) (3.24)

=
(
φ

[ℓ−1]
N+1 (a) · · · φ

[ℓ−1]
2N (a) 0M · · · 0M · · · 0M

)
Y (b),
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where the IM on the left-hand side and the second 0M on the right-hand side are
positioned in the ℓth columns. Similarly, letting x = b in (3.19), one obtains

(
φ

[ℓ−1]
1 (b) · · · φ

[ℓ−1]
N (b) 0M · · · 0M · · · 0M

)
Y (a)

=
(

−φ[ℓ−1]
N+1 (b) · · · −φ[ℓ−1]

2N (b) 0M · · · IM · · · 0M

)
Y (b),

(3.25)

where the second 0M on the left-hand side and the IM on the right-hand side are
positioned in the ℓth columns. We may stack (3.24) and (3.25) for N + 1 ≤ ℓ ≤ 2N
into a single matrix equation

AKY (a) = BKY (b), (3.26)

where AK and BK, which are 2N × 2N block matrices with M ×M block components,
are defined by

AK =




−φ
[N ]
1 (a) −φ

[N ]
2 (a) · · · −φ

[N ]
N (a) IM 0M · · · 0M

−φ
[N+1]
1 (a) −φ

[N+1]
2 (a) · · · −φ

[N+1]
N (a) 0M IM · · · 0M

...
...

. . .
...

...
...

. . .
...

−φ
[2N−1]
1 (a) −φ

[2N−1]
2 (a) · · · −φ

[2N−1]
N (a) 0M 0M · · · IM

φ
[N ]
1 (b) φ

[N ]
2 (b) · · · φ

[N ]
N (b) 0M 0M · · · 0M

φ
[N+1]
1 (b) φ

[N+1]
2 (b) · · · φ

[N+1]
N (b) 0M 0M · · · 0M

...
...

. . .
...

...
...

. . .
...

φ
[2N−1]
1 (b) φ

[2N−1]
2 (b) · · · φ

[2N−1]
N (b) 0M 0M · · · 0M




and

BK =




φ
[N ]
N+1(a) φ

[N ]
N+2(a) · · · φ

[N ]
2N (a) 0M 0M · · · 0M

φ
[N+1]
N+1 (a) φ

[N+1]
N+2 (a) · · · φ

[N+1]
2N (a) 0M 0M · · · 0M

...
...

. . .
...

...
...

. . .
...

φ
[2N−1]
N+1 (a) φ

[2N−1]
N+2 (a) · · · φ

[2N−1]
2N (a) 0M 0M · · · 0M

−φ
[N ]
N+1(b) −φ

[N ]
N+2(b) · · · −φ

[N ]
2N (b) IM 0M · · · 0M

−φ
[N+1]
N+1 (b) −φ

[N+1]
N+2 (b) · · · −φ

[N+1]
2N (b) 0M IM · · · 0M

...
...

. . .
...

...
...

. . .
...

−φ
[2N−1]
N+1 (b) −φ

[2N−1]
N+2 (b) · · · −φ

[2N−1]
2N (b) 0M 0M · · · IM




.

By introducing
ΦX =

(
φ

[j+N−1]
k+X

)N

j,k=1
, X ∈ {0, N}, (3.27)

the matrices AK and BK may be written in block form as

AK =
(

−Φ0(a) IM,N

Φ0(b) 0M,N

)
and BK =

(
ΦN (a) 0M,N

−ΦN (b) IM,N

)
, (3.28)

where IM,N = (δj,kIM )N
j,k=1 and 0M,N is the N ×N matrix in which all entries are 0M .

The main result of this paper may be stated as follows.
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Theorem 3.3. Assume Hypothesis 2.1 and suppose that ZN,N+1 is positive definite
a.e. on [a, b]. If (3.1) holds and {φj,k}2N,M

j=1,k=1 is the basis for ker(HZ,max) defined
by (3.3), then the domain of the Krein–von Neumann extension HZ,K of HZ,min is
given by

dom(HZ,K) = {y ∈ dom(HZ,max) |AKY (a) = BKY (b)}, (3.29)
where AK and BK are defined by (3.27) and (3.28).
Proof. The arguments in equations (3.10)–(3.28) imply

dom(HZ,K) ⊆ {y ∈ dom(HZ,max) |AKY (a) = BKY (b)}. (3.30)

Since the self-adjoint operator HZ,K does not have a proper self-adjoint extension,
in order to establish (3.29), it suffices to show that the set on the right-hand side of
(3.30) is the domain of a self-adjoint extension of HZ,min. In turn, by Theorem 2.4,
it suffices to show that AK and BK satisfy (2.22).

In view of the IM,N identity blocks in (3.28), it is clear that rank(AK |BK) = 2MN .
Thus, it remains to show

AKJM,2NA
∗
K = BKJM,2NB

∗
K. (3.31)

Writing JM,2N in block form as in (3.28),

JM,2N =
(

0M,N JM,N

(−1)NJM,N 0M,N

)
, (3.32)

where
JM,N =

(
(−1)jδj,N+1−kIM

)N

j,k=1 ∈
[
CM×M

]N×N
, (3.33)

we obtain

AKJM,2NA
∗
K

=
(

(−1)N+1JM,N Φ0(a)∗ − Φ0(a)JM,N (−1)NJM,N Φ0(b)∗

Φ0(b)JM,N 0M,N

)
,

(3.34)

and

BKJM,2NB
∗
K

=
(

0M,N ΦN (a)JM,N

(−1)NJM,N ΦN (a)∗ (−1)N+1JM,N ΦN (b)∗ − ΦN (b)JM,N

)
.

(3.35)

In order to prove (3.31), it suffices to prove equality between each of the respective
block components on the right-hand sides in (3.34) and (3.35). We show the equalities
for the (1, 1) and (1, 2) block components; that is, we prove

0M,N = (−1)N+1JM,N Φ0(a)∗ − Φ0(a)JM,N , (3.36)
ΦN (a)JM,N = (−1)NJM,N Φ0(b)∗. (3.37)
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The remaining two equalities for the (2, 1) and (2, 2) block components can be shown
in an entirely analogous manner. Using the elementary relation J−1

M,N = (−1)N+1JM,N ,
we isolate Φ0(a) and ΦN (a) in (3.36) and (3.37), respectively, and find that (3.36) and
(3.37) are equivalent to

Φ0(a) = JM,N Φ0(a)∗JM,N , (3.38)
ΦN (a) = −JM,N Φ0(b)∗JM,N . (3.39)

Entrywise, (3.38) and (3.39) reduce to showing that, for 1 ≤ j, k ≤ N ,

φ
[N+j−1]
k (a) = (−1)N+j+k+1

(
φ

[2N−k]
N+1−j(a)

)∗
, (3.40)

φ
[N+j−1]
N+k (a) = (−1)N+j+k

(
φ

[2N−k]
N+1−j(b)

)∗
, (3.41)

respectively. For 1 ≤ j, k ≤ N , we compute using (2.10) and (3.22),

[
φk, φN+1−j

]
Z

∣∣∣
b

a
= (−1)N

[ 2N−1∑

ℓ=0
(−1)1−ℓ

(
φ

[2N−1−ℓ]
N+1−j

)∗
φ

[ℓ]
k

]∣∣∣∣∣

b

a

= (−1)N

[ 2N−1∑

ℓ=0
(−1)1−ℓ

(
φ

[2N−1−ℓ]
N+1−j (b)

)∗
φ

[ℓ]
k (b)

]

+ (−1)N+1

[ 2N−1∑

ℓ=0
(−1)1−ℓ

(
φ

[2N−1−ℓ]
N+1−j (a)

)∗
φ

[ℓ]
k (a)

]
.

(3.42)

Since φ
[ℓ]
k (b) = 0 for 0 ≤ ℓ ≤ N − 1 and φ

[2N−1−ℓ]
N+1−j (b) = 0 for N ≤ ℓ ≤ 2N − 1

by (3.22), we conclude that the first sum after the second equality in (3.42) vanishes.
So conclusively we observe that
[
φk, φN+1−j

]
Z

∣∣∣
b

a

= (−1)N+1

[
N−1∑

ℓ=0
(−1)1−ℓ

(
φ

[2N−1−ℓ]
N+1−j (a)

)∗
φ

[ℓ]
k (a)

+
2N−1∑

ℓ=N

(−1)1−ℓ
(
φ

[2N−1−ℓ]
N+1−j (a)

)∗
φ

[ℓ]
k (a)

]

= (−1)N+1

[
N−1∑

ℓ=0
(−1)1−ℓ

(
φ

[2N−1−ℓ]
N+1−j (a)

)∗
δk,ℓ+1IM

+
2N−1∑

ℓ=N

(−1)1−ℓ (δ2N−ℓ,N+1−jIM )∗
φ

[ℓ]
k (a)

]

= (−1)N+1
[
(−1)1−(k−1)

(
φ

[2N−1−(k−1)]
N+1−j (a)

)∗
+ (−1)1−(N−1+j)φ

[N−1+j]
k (a)

]

= (−1)N+1
[
(−1)k

(
φ

[2N−k]
N+1−j(a)

)∗
+ (−1)N+jφ

[N−1+j]
k (a)

]
.

(3.43)
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By Lemma 2.3, we obtain
[
φk, φN+1−j

]′
Z

= φ∗
N+1−jW

(
τ

Z
φk

)
−
(
τ

Z
φN+1−j

)∗
Wφk = 0M , (3.44)

since τ
Z
φN+1−j = 0M and τ

Z
φk = 0M . Therefore, in particular, (3.43) and (3.44)

imply

0M =
[
φk, φN+1−j

]
Z

∣∣∣
b

a

= (−1)N+1
[
(−1)k

(
φ

[2N−k]
N+1−j(a)

)∗
+ (−1)N+jφ

[N−1+j]
k (a)

]
. (3.45)

Hence, (3.45) yields (3.40) after a simple algebraic manipulation.
For (3.41), we perform a similar calculation, using (3.22) once again:

[
φN+k, φN+1−j

]
Z

∣∣∣
b

a

= (−1)N

[ 2N−1∑

ℓ=0
(−1)1−ℓ

(
φ

[2N−1−ℓ]
N+1−j

)∗
φ

[ℓ]
N+k

]∣∣∣∣∣

b

a

= (−1)N

[
N−1∑

ℓ=0
(−1)1−ℓ0Mφ

[ℓ]
N+k(b)

+
2N−1∑

ℓ=N

(−1)1−ℓ
(
φ

[2N−1−ℓ]
N+1−j (b)

)∗
δk,ℓ+1IM

]

+ (−1)N+1

[
N−1∑

ℓ=0
(−1)1−ℓ

(
φ

[2N−1−ℓ]
N+1−j (a)

)∗
0M

+
2N−1∑

ℓ=N

(−1)1−ℓ (δN+1−j,2N−ℓIM )∗
φ

[ℓ]
N+k(a)

]

= (−1)N

[
(−1)k

(
φ

[2N−k]
N+1−j(b)

)∗
− (−1)N+jφ

[N−1+j]
N+k (a)

]
.

(3.46)

Thus, after another application of Lemma 2.3, we have

0M =
[
φN+k, φN+1−j

]
Z

∣∣∣
b

a

= (−1)N

[
(−1)k

(
φ

[2N−k]
N+1−j(b)

)∗
− (−1)N+jφ

[N−1+j]
N+k (a)

]
. (3.47)

Finally, we simplify (3.47) to obtain (3.41), as desired.

The two matrices AK and BK are invertible. As a result, Y (b) can be isolated in
the boundary condition in (3.29).
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Proposition 3.4. Assume Hypothesis 2.1. The matrices AK and BK defined by (3.27)
and (3.28) are invertible. In particular,

dom(HZ,K) =
{
y ∈ dom(HZ,max)

∣∣Y (b) = B−1
K AKY (a)

}
. (3.48)

Proof. We will show that BK is invertible; the invertibility of AK can be shown with
an analogous argument. We define the following vectors:

Dj,k =




φ
[N ]
N+j,k(a)

φ
[N+1]
N+j,k(a)

...
φ

[2N−1]
N+j,k (a)




∈ (CM )N , 1 ≤ j ≤ N, 1 ≤ k ≤ M, (3.49)

which are the columns of the matrix ΦN (a). We show that {Dj,k}N,M
j=1,k=1 is linearly

independent. Suppose that there exists {dj,k}N,M
j=1,k=1 ⊂ C such that

N,M∑

j=1,k=1
dj,kDj,k = 0. (3.50)

By (3.49), the identity in (3.50) is equivalent to

N,M∑

j=1,k=1
dj,kφ

[N+ℓ−1]
N+j,k (a) = 0, 1 ≤ ℓ ≤ N. (3.51)

We define the function Ψ over the interval [a, b] by

Ψ =
N,M∑

j=1,k=1
dj,kφN+j,k. (3.52)

Now, we consider the first 2N−1 quasi-derivatives of Ψ at a. Recall that for 1 ≤ j ≤ N ,
1 ≤ k ≤ M , φj,k is the unique function in ker(HZ,max) such that (Γφj+N,k)ℓ = δj+N,ℓek

for all 1 ≤ ℓ ≤ 2N . From this, we note that for 1 ≤ j ≤ N , 1 ≤ k ≤ M , the first
N − 1 quasi-derivatives of φj+N,k evaluated at a are all zero. Since Ψ is simply a linear
combination of the φN+j,k, it is clear that Ψ[ℓ](a) = 0. Secondly, we observe that

Ψ[N+ℓ−1](a) =
N,M∑

j=1,k=1
dj,kφ

[N+ℓ−1]
N+j,k (a) = 0, 1 ≤ ℓ ≤ N, (3.53)

by (3.51). In total, this yields that the first 2N − 1 quasi-derivatives of Ψ evaluated
at a are zero. For our final observation, we note

τ
Z

Ψ =
N,M∑

j=1,k=1
dj,k(τ

Z
φj,k) =

N,M∑

j=1,k=1
dj,k(0) = 0. (3.54)
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Therefore, Ψ is a solution to the initial value problem given by
{
τ

Z
f = 0,

f [ℓ−1](a) = 0, 1 ≤ ℓ ≤ 2N.
(3.55)

By [22, Proposition 2.4], solutions to such initial value problems are unique. Since the
zero function also satisfies the initial value problem (3.55), we have Ψ = 0. However,
{φj,k}2N,M

j=1,k=1 is linearly independent, so dj,k = 0 for all j, k. Therefore, {Dj,k}N,M
j=1,k=1

is linearly independent, and it follows that the matrix ΦN (a) is invertible. Taking

B̂K :=
(

ΦN (a)−1 0M,N

ΦN (b)ΦN (a)−1
IM,N

)
, (3.56)

one then verifies that
B̂KBK =

(
IM,N 0M,N

0M,N IM,N

)
. (3.57)

Hence, BK is invertible with B−1
K = B̂K. Finally, (3.48) follows directly from (3.29)

after a simple algebraic manipulation.

Remark 3.5. Introducing for y ∈ dom(HZ,max) the vectors y∧, y∨ ∈ (CM )N by

y∧ =
(
y(a), y[1](a), . . . , y[N−1](a), y(b), y[1](b), . . . , y[N−1](b)

)⊤
, (3.58)

y∨ =
(
y[2N−1](a), y[2N−2](a), . . . , y[N ](a),
− y[2N−1](b),−y[2N−2](b), . . . ,−y[N ](b)

)
, (3.59)

one infers that the boundary condition AKY (a) = BKY (b) may be recast as
(

−J̃M,N 0M,N

0M,N J̃M,N

)
y∨ + i

(
−iΦ0(a) −iΦN (a)
−iΦ0(b) −iΦN (b)

)
y∧ = 0, (3.60)

where J̃M,N =
(
δj,N+1−kIM

)N

j,k=1. The boundary condition in (3.60) is similar in
form to the boundary condition used in [27, Theorem A.7] to parametrize self-adjoint
extensions.
Remark 3.6. Although Remark 1.3 establishes that HZ,F and HZ,K are relatively
prime with respect to HZ,min, our characterization in Theorem 3.3 yields a compu-
tational proof of the same fact. If f ∈ dom(HZ,F) ∩ dom(HZ,K), combining (2.25)
and (3.29), we obtain the boundary condition

(
−Φ0(a) IM,N

Φ0(b) 0M,N

)




0
...
0

f [N ](a)
...

f [2N−1](a)




=
(

ΦN (a) 0M,N

−ΦN (b) IM,N

)




0
...
0

f [N ](b)
...

f [2N−1](b)




. (3.61)
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Expanding out, we obtain



f [N ](a)
...

f [2N−1](a)


 = 0 =




f [N ](b)
...

f [2N−1](b)


 , (3.62)

which implies dom(HZ,K) ∩ dom(HZ,F) = dom(HZ,min) by (2.16). Thus, HZ,K and
HZ,F are relatively prime with respect to HZ,min.

4. APPLICATIONS

Here we consider applications of Theorem 3.3 and Proposition 3.4 to generalized
four-coefficient Sturm–Liouville expressions, a fourth-order differential expression,
and the even order pure differential expression in (1.17). In particular, we use our
abstract approach to recover the characterization by Granovskyi and Oridoroga [14]
of the Krein–von Neumann extension corresponding to (1.17).

4.1. FOUR-COEFFICIENT GENERALIZED STURM–LIOUVILLE OPERATOR

We consider a regular four-coefficient generalized Sturm–Liouville operator with
matrix-valued coefficients. Assuming that the associated minimal operator is strictly
positive, we apply the results of Section 3 to characterize its Krein–von Neumann
extension.

Let M ∈ N and [a, b] ⊂ R be fixed. Suppose that p, q, r, s ∈ L([a, b])M×M satisfy
the following conditions:

(i) p and r are positive definite a.e. on [a, b],
(ii) p−1, q, r, s ∈ L1([a, b])M×M ,
(iii) q∗ = q a.e. on [a, b].

The assumptions in (i)–(iii) imply that Hypothesis 2.1 is satisfied with N = 1,
W = r, and

Z =
(

−s p−1

q s∗

)
∈
[
L1([a, b])M×M

]2×2
. (4.1)

Note that condition (A2) in Hypothesis 2.1 is vacuous in the case N = 1. By (2.2)
and (2.3), the quasi-derivatives corresponding to (4.1) of a function y ∈ D[2]

Z ([a, b]) are

y[1] = p[y′ + sy], (4.2)

y[2] =
[(
y[1])′ −

(
qy + s∗y[1])]

= [(p[y′ + sy])′ − s∗p[y′ + sy] − qy] .

In particular, (4.1) gives rise to the following quasi-differential expression:

τ
Z
y = r−1[− (p[y′ + sy])′ + s∗p[y′ + sy] + qy

]
, y ∈ D[2]

Z ([a, b]). (4.3)
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The expression (4.3) is a generalization of the four-coefficient generalized
Sturm–Liouville expression treated in [7], where the coefficients are assumed to be
scalar-valued (i.e., M = 1) and s is assumed to be real-valued.

The minimal operator HZ,min corresponding to (4.3) is given by (2.16). Note that
Z1,2 = p−1 is positive definite a.e. on [a, b], so HZ,min is bounded from below by
Theorem 2.5. Assuming HZ,min is strictly positive, Theorem 3.3 and Proposition 3.4
can be applied to characterize the Krein–von Neumann extension HZ,K of HZ,min.

Here we will compute the matrices AK, BK, and B−1
K AK appearing in Theorem 3.3

and Proposition 3.4. Since HZ,min is strictly positive, we have dim(ker(HZ,max)) = 2M .
Let {φj,k}2,M

j=1,k=1 denote the basis for ker(HZ,max) guaranteed to exist by Lemma 3.1.
Define the M ×M matrix-valued functions φ1 and φ2 by

φj = (φj,1 |φj,2 | · · · |φj,M ), j ∈ {1, 2}, (4.4)

so that φ1(a) = φ2(b) = IM and φ1(b) = φ2(a) = 0M . By Theorem 3.3, we obtain the
following matrices:

AK =
(

−φ[1]
1 (a) IM

φ
[1]
1 (b) 0M

)
and BK =

(
φ

[1]
2 (a) 0M

−φ[1]
2 (b) IM

)
. (4.5)

Finally, we obtain the inverse of BK in terms of the inverse of φ[1]
2 (a) (the invertibility

of φ[1]
2 (a) follows from the proof of Proposition 3.4, since φ2(a) plays the role of ΦN (a)

in this example):

B−1
K =

( (
φ

[1]
2 (a)

)−1 0M

φ
[1]
2 (b)

(
φ

[1]
2 (a)

)−1
IM

)
. (4.6)

Therefore,
dom(HZ,K) =

{
y ∈ dom(HZ,max)

∣∣Y (b) = TKY (a)
}
, (4.7)

where by Proposition 3.4,

TK = B−1
K AK =

(
−
(
φ

[1]
2 (a)

)−1
φ

[1]
1 (a)

(
φ

[1]
2 (a)

)−1

φ
[1]
1 (b) − φ

[1]
2 (b)

(
φ

[1]
2 (a)

)−1
φ

[1]
1 (a) φ

[1]
2 (b)

(
φ

[1]
2 (a)

)−1

)
. (4.8)

The characterization of the Krein–von Neumann extension given in (4.7) and (4.8)
generalizes the result in [7, Theorem 12.3] to the case of matrix-valued coefficients
p, q, r, s. In fact, one can see that (4.8) is equivalent to the form presented in
[7, Theorem 12.3] when p, q, r, s are scalar-valued (cf. (1.15)):

TK = B−1
K AK = 1

u
[1]
2 (a)

(
−u[1]

1 (a) 1

u
[1]
2 (a)u[1]

1 (b) − u
[1]
2 (b)u[1]

1 (a) u
[1]
2 (b)

)
, (4.9)

where uj , j ∈ {1, 2}, are solutions to τZy = 0 that satisfy the boundary conditions
u1(a) = u2(b) = 1 and u1(b) = u2(a) = 0.



The Krein–von Neumann extension of a regular even order quasi-differential operator 825

4.2. FOURTH-ORDER DIFFERENTIAL OPERATOR

Let M = N = 1, [a, b] ⊂ R, and W = 1 a.e. on [a, b]. Consider the matrix-valued
function Z = (Zj,k)4

j,k=1 ∈ L1([a, b])4×4 given by

Z =




0 1 0 0
0 0 1 0
0 0 0 1

−1 0 0 0


 a.e. on [a, b]. (4.10)

One then verifies that Hypothesis 2.1 holds, and the corresponding differential expres-
sion is

τ
Z
y = y(4) + y, y ∈ D

[4]
Z ([a, b]). (4.11)

The minimal operator HZ,min corresponding to (4.11) is given by (2.15) and is strictly
positive. Since Z2,3 = 1 > 0 a.e. on [a, b], Theorem 3.3 and Proposition 3.4 can
be applied to characterize the Krein–von Neumann extension HZ,K of HZ,min. Here
we will compute the matrices AK, BK, and B−1

K AK appearing in Theorem 3.3 and
Proposition 3.4.

To determine AK and BK, we must determine the basis {φk,1}4
k=1 shown to exist

in Lemma 3.1. Standard solution methods for linear differential equations imply that
the solution space of τ

Z
y = 0 on the interval [a, b] has the basis

{
eωx, e−ωx, eω3x, e−ω3x

}
, (4.12)

where ω = 1√
2 + i√

2 denotes a primitive fourth root of −1. We denote the elements in
(4.12) by y1, y2, y3, and y4, respectively.

We must find the basis {φk,1}4
k=1 of this solution space with Γφk,1 = ek, where

ek = (δj,k)4
j=1 denotes the kth standard basis vector in C4. To find it, we need to find

coefficients {cj,k}4
j,k=1 ⊂ C such that

φℓ,1 =
4∑

j=1
cj,ℓyj , 1 ≤ ℓ ≤ 4. (4.13)

The set of equations Γφℓ,1 = eℓ, 1 ≤ ℓ ≤ 4, can then be arranged into a matrix
equation:

( Γy1 | Γy2 | Γy3 | Γy4 ) (cj,k)4
j,k=1 = I4. (4.14)

Thus,
(cj,k)4

j,k=1 = ( Γy1 | Γy2 | Γy3 | Γy4 )−1
. (4.15)

So to determine the coefficients of φℓ,1 for each 1 ≤ ℓ ≤ 4, it suffices to invert the matrix

Λ := ( Γy1 | Γy2 | Γy3 | Γy4 ) (4.16)

and read off its ℓth column.
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On the interval [a, b], we obtain

Λ =




eωa e−ωa eω3a e−ω3a

ωeωa −ωe−ωa ω3eω3a −ω3e−ω3a

eωb e−ωb eω3b e−ω3b

ωeωb −ωe−ωb ω3eω3b −ω3e−ω3b


 . (4.17)

To simplify expressions, we will assume a = 0 and b =
√

2π throughout the remainder
of this example. On this interval, (4.17) is of the form

Λ =




1 1 1 1
ω −ω α3 −α3

−eπ −e−π −e−π −eπ

−ωeπ ωe−π −α3e−π α3eπ


 , (4.18)

where α := eπ. The inverse of (4.18) is easily computed by hand or by computer
algebra, yielding the matrix

Λ−1 = ω√
2(α2 − 1)




−1 ω3 −α ω3α
α2 ω3α2 α ω3α

−iα2 −ω3α2 −iα −ω3α
i −ω3 iα −ω3α


 . (4.19)

Reading off the columns of (4.19), we obtain the four functions




φ1,1(x) = ω√
2(α2 − 1)

[
− eωx + α2e−ωx + i(−α2eω3x + e−ω3x)

]
,

φ2,1(x) = − 1√
2(α2 − 1)

[
eωx + α2e−ωx − α2eω3x − e−ω3x

]
,

φ3,1(x) = αω√
2(α2 − 1)

[
− eωx + e−ωx + i(−eω3x + e−ω3x)

]
,

φ4,1(x) = − α√
2(α2 − 1)

[
eωx + e−ωx − eω3x − e−ω3x

]
, x ∈ [0,

√
2π].

(4.20)

By taking second and third derivatives and evaluating at 0 and
√

2π, we compute
the boundary condition matrices as

AK =




1
√

2iα2+1
α2−1 1 0

−
√

2 α2+1
α2−1 −i 0 1

0 2
√

2αi
α2−1 0 0

−2
√

2 α
α2−1 0 0 0


 , (4.21)

BK =




0 −2
√

2i α
α2−1 0 0

2
√

2α
α2−1 0 0 0

1 −
√

2iα2+1
α2−1 1 0√

2 α2+1
α2−1 −i 0 1


 . (4.22)
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Using hyperbolic trigonometric identities, we have

B−1
K =




0 sinh(π)√
2 0 0

i sinh(π)√
2 0 0 0

− cosh(π) − sinh(π)√
2 1 0

− sinh(π)√
2 − cosh(π) 0 1



. (4.23)

Finally, we compute B−1
K AK and obtain

B−1
K AK =




− cosh(π) − i sinh(π)√
2 0 sinh(π)√

2
i sinh(π)√

2 − cosh(π) i sinh(π)√
2 0

0 − i sinh(π)√
2 − cosh(π) − sinh(π)√

2
sinh(π)√

2 0 − sinh(π)√
2 − cosh(π)



. (4.24)

4.3. PURE DIFFERENTIAL OPERATOR OF ORDER 2N

Let M = 1, N ∈ N, [a, b] ⊂ R, and W = 1 a.e. on [a, b]. Consider Z = (Zj,k)2N
j,k=1 ∈

L1([a, b])2N×2N defined by

Zj,k = δj+1,k a.e. on [a, b] for 1 ≤ j, k ≤ 2N. (4.25)

That is, Z is almost everywhere constant on [a, b]:

Z =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

... . . . ...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
0 0 0 . . . 0 0




a.e. on [a, b]. (4.26)

One then verifies that Hypothesis 2.1 holds. By (2.2) and (2.3), the quasi-derivatives
corresponding to (4.26) of a function y ∈ D

[2N ]
Z ([a, b]) are simply ordinary derivatives:

y[j] = y(j), 0 ≤ j ≤ 2N. (4.27)

Thus, (4.26) gives rise to the following (formally nonnegative) pure ordinary differential
expression of order 2N :

τ
Z
y = (−1)Ny(2N), y ∈ D

[2N ]
Z ([a, b]), (4.28)

and τ
Z

generates the minimal operatorHZ,min in accordance with (2.16). The coefficient
ZN,N+1 = 1 > 0 a.e. on [a, b], and HZ,min is strictly positive. We will apply Theorem 3.3
and Proposition 3.4 to characterize the domain of the Krein–von Neumann extension
HZ,K of HZ,min.
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The calculations throughout this subsection make extensive use of several combina-
torial identities. For completeness, we recall these identities in the following lemma and
refer to [17, pp. 58–59, Equations (17), (22), and (23)] for further details. We employ
the combinatorial convention (see, e.g., [17, p. 55, Equation (6)]) that for nonnegative
real numbers r and all positive integers k,

(
r

−k

)
=
(

r

r + k

)
= 0, (4.29)

which implies, upon taking r = 0, that

1
(−k)! = 0. (4.30)

Lemma 4.1. The following combinatorial identities hold:

(i) If p, q ∈ Z, then
(−p
q

)
= (−1)q

(
p+ q − 1

q

)
. (4.31)

(ii) If s ∈ R, r ∈ Z≥0,m, n ∈ Z, then

∞∑

k=−∞

(
r

m+ k

)(
s

n+ k

)
=
(

r + s

r −m+ n

)
. (4.32)

(iii) If N ∈ Z≥0, 1 ≤ j, k ≤ N , then

N∑

ℓ=1
(−1)ℓ+k

(
j − 1
ℓ− 1

)(
ℓ− 1
k − 1

)
= δj,k. (4.33)

In order to apply Theorem 3.3 to characterize HZ,K, we must determine the basis
{φk,1}2N

k=1 of ker(HZ,max) that was shown to exist in Lemma 3.1. By integration, it is
clear that

ker(HZ,max) = span {xj−1}2N
j=1. (4.34)

We shall first calculate {φk,1}2N
k=1 in the special case when [a, b] = [0, 1]; let us relabel

the basis {φk,1}2N
k=1 as {pk}2N

k=1 in this case. Thus, in the case [a, b] = [0, 1], we must
determine {pk}2N

k=1 ⊂ span {xj−1}2N
j=1 such that for each 1 ≤ j ≤ N ,

p
(j−1)
k (0) = δj,k, p

(j−1)
k (1) = 0, 1 ≤ k ≤ N,

p
(j−1)
k (0) = 0, p

(j−1)
k (1) = δj+N,k, N + 1 ≤ k ≤ 2N.

(4.35)
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Lemma 3.1 guarantees, for each 1 ≤ k ≤ 2N , the existence of a function
pk ∈ ker(HZ,max) with

Γpk =




p(0)
p(1)(0)

...
p(N−1)(0)
p(1)
p(1)(1)

...
p(N−1)(1)




= ek, (4.36)

where ek = (δj,k)2N
j=1 denotes the kth standard basis vector in C2N . In light of (4.34),

there exist scalars {cℓ,k}2N
ℓ=1 ⊂ C such that

pk =
2N∑

ℓ=1
cℓ,kx

ℓ−1, 1 ≤ k ≤ 2N. (4.37)

Therefore,

ek = Γpk = Γ
( 2N∑

ℓ=1
cℓ,kx

ℓ−1

)
=

2N∑

ℓ=1
cℓ,kΓxℓ−1, 1 ≤ k ≤ 2N, (4.38)

which can be recast as a matrix product

Λ




c1,k

c2,k

...
c2N,k


 = ek, 1 ≤ k ≤ 2N, (4.39)

where
Λ :=

(
Γ1 | Γx | · · · | Γx2N−1) ∈ C2N×2N . (4.40)

The equalities in (4.39) may be summarized in matrix form as

Λ




c1,1 c1,2 . . . c1,2N

c2,1 c2,2 . . . c2,2N

...
... . . . ...

c2N,1 c2N,2 . . . c2N,2N


 = (e1 | e2 | · · · | e2N ) = I2N . (4.41)

Thus, we deduce that



c1,1 c1,2 . . . c1,2N

c2,1 c2,2 . . . c2,2N

...
... . . . ...

c2N,1 c2N,2 . . . c2N,2N


 = Λ−1. (4.42)
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Therefore, to retrieve the basis {pk}2N
k=1 for ker(HZ,max) it is crucial to understand

the matrix Λ−1. We observe that Λ has a 2 × 2 block matrix form:

Λ =
(
A 0N

C D

)
(4.43)

in which

A =
(
dj−1

dxj−1
[
xk−1]∣∣∣

x=0

)N

j,k=1
=
(
δj,k(j − 1)!

)N

j,k=1, (4.44)

C =
(
dj−1

dxj−1
[
xk−1]∣∣∣

x=1

)N

j,k=1
=
(

(k − 1)!
(k − j)!

)N

j,k=1
, (4.45)

D =
(
dj−1

dxj−1
[
xN+k−1]∣∣∣

x=1

)N

j,k=1
=
(

(N + k − 1)!
(N + k − j)!

)N

j,k=1
. (4.46)

It is clear that A is invertible and that

A−1 =
(
δj,k

1
(j − 1)!

)N

j,k=1
. (4.47)

Next, we show that D is invertible and obtain an explicit form for D−1.
Lemma 4.2. The matrix D defined by (4.46) is invertible and

D−1 =
(

N∑

ℓ=1

(−1)j+ℓ

(k − 1)!

(
ℓ− 1
j − 1

)(
N − 1 + ℓ− k

ℓ− k

))N

j,k=1

. (4.48)

Proof. It suffices to prove that
QA−1D = P (4.49)

in which

Q =
(

(−1)j−k

(
N − 1 + j − k

j − k

))N

j,k=1
and P =

((
k − 1
j − 1

))N

j,k=1
, (4.50)

where Q and P arise naturally when one performs row reduction operations on D.
In fact, the matrix P , whose entries give Pascal’s triangle in the upper triangle of
the matrix, is invertible with the inverse

P−1 =
(

(−1)j+k

(
k − 1
j − 1

))N

j,k=1

, (4.51)

as one can verify via Lemma 4.1 part (iii). Thus, (4.49) implies

(P−1QA−1)D = IN , (4.52)

which proves the lemma.
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To show (4.49), we observe that

(QA−1D)j,k =
N∑

s,ℓ=1
(−1)j+s

(
N − 1 + j − s

j − s

)
δs,ℓ(k +N − 1)!

(s− 1)!(k +N − ℓ)!

=
N∑

s=1
(−1)j+s

(
N − 1 + j − s

j − s

)
(k +N − 1)!

(s− 1)!(k +N − s)!

=
N∑

s=1
(−1)j+s

(
N − 1 + j − s

j − s

)(
N + k − 1
s− 1

)
. (4.53)

We observe that the second combination in (4.53) is only nonzero for 1 ≤ s ≤ N + k
and the first is only nonzero for s ≤ j ≤ N . Therefore, all the nonzero terms for
integer s fall between 1 and N . Thus, we reindex the sum in the final expression in
(4.53) to be over all the integers, and the calculation may be continued as follows:

∞∑

s=−∞
(−1)j+s

(
N − 1 + j − s

j − s

)(
N + k − 1
s− 1

)

=
∞∑

s=−∞

( −N
−N − j + s

)(
N + k − 1
s− 1

)

=
(

N + k − 1 −N

N + k − 1 + 1 −N − j

)

=
(
k − 1
k − j

)
=
(
k − 1
j − 1

)
= Pj,k, 1 ≤ j, k ≤ N,

(4.54)

as desired. In (4.54), the first and second equalities follow from Lemma 4.1 parts (i)
and (ii), respectively. The equality in (4.48) follows by using (4.47), (4.50), and (4.51)
to compute matrix elements in D−1 = P−1QA−1.

It is now a straightforward calculation to verify that Λ−1 is given, in block form, by

Λ−1 =
(
A 0N

C D

)−1
=
(

A−1 0N

−D−1CA−1 D−1

)
, (4.55)

where A−1 and D−1 are given in (4.47) and (4.48), respectively, and

(D−1CA−1)j,k =
N∑

r,ℓ=1

(−1)j+r

(r − 1)!(k − r)!

(
ℓ− 1
j − 1

)(
N + ℓ− r − 1

N − 1

)
,

1 ≤ j, k ≤ N.

(4.56)
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Recalling (4.37) and (4.42), for each 1 ≤ k ≤ 2N , we obtain an explicit form for
each polynomial pk by reading off the kth column (cℓ,k)2N

ℓ=1 of Λ−1 and writing the
linear combination in (4.37). For 1 ≤ k ≤ N , we obtain:

pk = xk−1

(k − 1)! −
N∑

r,ℓ,s=1

(−1)s+rxN−1+s

(r − 1)!(k − r)!

(
ℓ− 1
s− 1

)(
N + ℓ− r − 1

N − 1

)
,

pN+k =
N∑

s,ℓ=1

(−1)s+kxN−1+s

(k − 1)!

(
ℓ− 1
s− 1

)(
N + ℓ− k − 1

N − 1

)
, (4.57)

which yields {pk}2N
k=1.

Returning to the general case of arbitrary [a, b], the basis {φk,1}2N
k=1 for the subspace

ker(HZ,max) may be obtained from {pk}2N
k=1 by scaling and translation via

φk,1(x) =





(b− a)k−1pk

(
x− a

b− a

)
, 1 ≤ k ≤ N,

(b− a)k−N−1pk

(
x− a

b− a

)
, N + 1 ≤ k ≤ 2N,

x ∈ [a, b]. (4.58)

In this way, the only nonzero derivative of φk,1 is either the (k − 1)st derivative at
x = a or the (k −N − 1)st derivative at x = b, and by the chain rule, for 1 ≤ j ≤ N ,

φ
(j−1)
k,1 (a) = δj,k, 1 ≤ k ≤ N,

φ
(j−1)
k,1 (b) = δj+N,k, N + 1 ≤ k ≤ 2N.

(4.59)

Explicitly, for 1 ≤ k ≤ N , we obtain:

φk,1 = (x− a)k−1

(k − 1)! −
N∑

s,r,ℓ=1

(−1)s+r(x− a)N−1+s

(r − 1)!(k − r)!(b− a)N−k+s

(
ℓ−1
s−1

)(
N+ℓ−r−1

N−1

)
,

φN+k,1 =
N∑

s,ℓ=1

(−1)s+k(x− a)N−1+s

(k − 1)!(b− a)N−k+s

(
ℓ− 1
s− 1

)(
N + ℓ− k − 1

N − 1

)
.

(4.60)
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Thus, the matrices AK and BK may be characterized as follows:

AK =
(

−Φ0(a) IN

Φ0(b) 0N

)
and BK =

(
ΦN (a) 0N

−ΦN (b) IN

)
(4.61)

in which

Φ0(a) =
(

−(N − 1 + j)!
(b− a)N−k+j

N∑

r,ℓ=1

(
(−1)j+r

(r − 1)!(k − r)!

(
ℓ−1
j−1

)(
N+ℓ−r−1

N−1

)))N

j,k=1

, (4.62)

Φ0(b) =
(

−1
(b− a)N−k+j

N∑

s,r,ℓ=1

(
(−1)r+s(N−1+s)!

(r−1)!(k−r)!(s−j)!

(
ℓ−1
j−1

)(
N+ℓ−r−1

N−1

)))N

j,k=1

,

(4.63)

ΦN (a) =
(

(N − 1 + j)!
(b− a)N−k+j

N∑

ℓ=1

(
(−1)j+k

(k − 1)!

(
ℓ−1
j−1

)(
N+ℓ−k−1

N−1

)))N

j,k=1

, (4.64)

ΦN (b) =
(

1
(b− a)N−k+j

N∑

s,ℓ=1

(
(−1)s+k(N − 1 + s)!

(k − 1)!(s− j)!

(
ℓ−1
j−1

)(
N+ℓ−k−1

N−1

)))N

j,k=1

.

(4.65)

Define TK to be the upper triangular Toeplitz matrix

TK =
(

(b− a)k−j

(k − j)!

)2N

j,k=1
. (4.66)

We now show that

AK = BKTK. (4.67)

Observe that TK can be represented as a 2 × 2 block matrix

TK =
(
T1 T2
0 T1

)
(4.68)

in which

T1 =
(

(b− a)k−j

(k − j)!

)N

j,k=1
and T2 =

(
(b− a)k−j

(N + k − j)!

)N

j,k=1
. (4.69)
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Thus, using (4.61) and (4.68), BKTK may be computed via blockwise matrix multipli-
cation:

BKTK =
(

ΦN (a)T1 ΦN (a)T2
−ΦN (b)T1 −ΦN (b)T2 + T1

)
. (4.70)

Given (4.70) and the 2 × 2 block structure of AK (cf. (4.61)), the equality in (4.67)
translates to the following four equalities:

−ΦN (a)T1 = Φ0(a), (4.71)

−ΦN (b)T1 = Φ0(b), (4.72)

ΦN (a)T2 = IN , (4.73)

ΦN (b)T2 = T1. (4.74)

The identities in (4.71) and (4.72) are immediately evident when the matrix product
is written out for a general component. Beginning with (4.71), we have

(
− ΦN (a)T1

)
j,k

= −
N∑

r=1
(ΦN (a))j,r(T1)r,k

= −
N∑

r=1

[
(N − 1 + j)!
(b− a)N−r+j

N∑

ℓ=1

(
(−1)j+r

(r − 1)!

(
ℓ−1
j−1

)(
N+ℓ−r−1

N−1

))
(b− a)k−r

(k − r)!

]

= −(N − 1 + j)!
(b− a)N−k+j

N∑

r,ℓ=1

[
(−1)j+r

(r − 1)!(k − r)!

(
ℓ−1
j−1

)(
N+ℓ−r−1

N−1

)]

=
(
Φ0(a)

)
j,k
, 1 ≤ j, k ≤ N,

(4.75)



The Krein–von Neumann extension of a regular even order quasi-differential operator 835

and then for (4.72):

(
− ΦN (b)T1

)
j,k

= −
N∑

r=1
(ΦN (a))j,r(T1)r,k

= −
N∑

r=1

[
1

(b− a)N−r+j

N∑

ℓ,s=1

(
(−1)s+r(N − 1 + s)!

(r − 1)!(s− j)!

×
(
ℓ− 1
j − 1

)(
N + ℓ− r − 1

N − 1

))
(b− a)k−r

(k − r)!

]

= −1
(b− a)N−k+j

N∑

r,s,ℓ=1

[
(−1)s+r(N − 1 + s)!

(r − 1)!(k − r)!(s− j)!

(
ℓ− 1
j − 1

)(
N + ℓ− r − 1

N − 1

)]

= (Φ0(b))j,k , 1 ≤ j, k ≤ N.

(4.76)

The justifications for (4.73) and (4.74) make extensive use of the combinatorial identi-
ties in Lemma 4.1. To show that (4.73) holds, we compute as follows:

(
ΦN (a)T2

)
j,k

=
N∑

r=1
(ΦN (a))j,r(T2)r,k

=
N∑

r=1

[
(N − 1 + j)!
(b− a)N−r+j

×
N∑

ℓ=1

(
(−1)j+r

(r − 1)!

(
ℓ− 1
j − 1

)(
N + ℓ− r − 1

N − 1

))
(b− a)N+k−r

(N + k − r)!

]

= (N − 1 + j)!
(b− a)j−k

1
(N − 1 + k)!

×
N∑

ℓ=1

N∑

r=1

[
(−1)j+r(N − 1 + k)!
(r − 1)!(N + k − r)!

(
ℓ− 1
j − 1

)(
N + ℓ− r − 1

N − 1

)]

= (N − 1 + j)!
(b− a)j−k(N − 1 + k)!

×
N∑

ℓ=1

(
ℓ− 1
j − 1

) N∑

r=1

[
(−1)j−ℓ(−1)ℓ−r

(
N − 1 + k

r − 1

)(
N + ℓ− r − 1

ℓ− r

)]
.

(4.77)

Within the sum indexed by r, we observe that the first binomial coefficient is zero for
r ≤ 0, and the second binomial coefficient is zero whenever ℓ − r ≤ 0. Since ℓ ≤ N ,
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we see that for any ℓ, the only possible nonzero terms within the sum are those such
that 1 ≤ r ≤ N . Thus, the calculation may be continued as follows:

(N − 1 + j)!
(b− a)j−k(N − 1 + k)!

×
N∑

ℓ=1

(
ℓ− 1
j − 1

) ∞∑

r=−∞

[
(−1)j−ℓ(−1)ℓ−r

(
N − 1 + k

r − 1

)(
N + ℓ− r − 1

ℓ− r

)]

= (N − 1 + j)!
(b− a)j−k(N − 1 + k)!

×
N∑

ℓ=1

(
ℓ− 1
j − 1

) ∞∑

r=−∞

[
(−1)j−ℓ

(
N − 1 + k

r − 1

)(−N
ℓ− r

)]

= (N − 1 + j)!
(b− a)j−k(N − 1 + k)!

×
N∑

ℓ=1
(−1)j−ℓ

(
ℓ− 1
j − 1

) ∞∑

r=−∞

[(
N − 1 + k

r − 1

)( −N
−N − ℓ+ r

)]

= (N − 1 + j)!
(b− a)j−k(N − 1 + k)!

×
N∑

ℓ=1

[
(−1)j−ℓ

(
ℓ− 1
j − 1

)(
N − 1 + k + (−N)

N − 1 + k − (−1) + (−N − ℓ)

)]

= (N − 1 + j)!
(b− a)j−k(N − 1 + k)!

N∑

ℓ=1

[
(−1)j−ℓ

(
ℓ− 1
j − 1

)(
k − 1
k − ℓ

)]

= (N − 1 + j)!
(b− a)j−k(N − 1 + k)!δj,k

= δj,k

= (IN )j,k, 1 ≤ j, k ≤ N,

(4.78)

where the second, third and fifth equalities in (4.78) follow from Lemma 4.1 parts (i),
(ii) and (iii), respectively.

Finally, for (4.74), we begin with

(ΦN (b)T2)j,k =
N∑

r=1

(b− a)N−r−k

(b− a)N−r+j(N + k − r)!

×
N∑

ℓ,s=1

(
(−1)s+r(N − 1 + s)!

(r − 1)!(s− j)!

(
ℓ− 1
j − 1

)(
N + ℓ− r − 1

N − 1

))
,

(4.79)
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which we manipulate as follows:

(ΦN (b)T2)j,k

= (b− a)k−j (N + k − 1)!
(N + k − 1)!

N∑

ℓ,s=1

(
(−1)s+r(N − 1 + s)!

(s− j)!

(
ℓ− 1
j − 1

)

×
N∑

r=1

(
N + ℓ− r − 1

N − 1

)
1

(r − 1)!(N + k − r)!

)

= (b− a)k−j
N∑

ℓ,s=1

(
(−1)s+ℓ(N − 1 + s)!
(s− j)!(N + k − 1)!

(
ℓ− 1
j − 1

)

×
N∑

r=1
(−1)ℓ−r

(
N + k − 1
r − 1

)(
N + ℓ− r − 1

ℓ− r

))
.

Within the sum indexed by r, similar to the calculation in (4.78), we observe that
the first binomial coefficient is zero for r ≤ 0, and the second binomial coefficient is
zero whenever ℓ− r ≤ 0. Since ℓ ≤ N , we see that for any ℓ, the only possible nonzero
terms within the sum are those such that 1 ≤ r ≤ N . Therefore,

(ΦN (b)T2)j,k (4.80)

= (b− a)k−j
N∑

ℓ,s=1

(
(−1)s+ℓ(N − 1 + s)!
(s− j)!(N + k − 1)!

(
ℓ− 1
j − 1

)

×
∞∑

r=−∞
(−1)ℓ−r

(
N + k − 1
r − 1

)(
N + ℓ− r − 1

ℓ− r

))
.

Applying part (i) of Lemma 4.1 in the right-hand side of (4.80) yields

(ΦN (b)T2)j,k

= (b− a)k−j
N∑

ℓ,s=1

(
(−1)s+ℓ(N − 1 + s)!
(s− j)!(N + k − 1)!

(
ℓ−1
j−1

) ∞∑

r=−∞

(
N+k−1
r−1

)(−N
ℓ−r

))

= (b− a)k−j
N∑

ℓ,s=1

(
(−1)s+ℓ(N − 1 + s)!
(s− j)!(N + k − 1)!

(
ℓ−1
j−1

) ∞∑

r=−∞

(
N+k−1
−1+r

)( −N
(−N−ℓ)+r

))
.

(4.81)
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Finally, applying part (ii) of Lemma 4.1 to the final summation in (4.81), we obtain

(ΦN (b)T2)j,k

= (b− a)k−j
N∑

ℓ,s=1

(
(−1)s+ℓ(N − 1 + s)!
(s− j)!(N + k − 1)!

(
ℓ− 1
j − 1

)(
k − 1
ℓ− 1

))

= (b− a)k−j
N∑

s=1

(
(N − 1 + s)!

(s− j)!(N + k − 1)!

N∑

ℓ=1
(−1)s+ℓ

(
ℓ− 1
j − 1

)(
k − 1
ℓ− 1

))

= (b− a)k−j
N∑

s=1

(
(N − 1 + s)!

(s− j)!(N + k − 1)!δs,k

)

= (b− a)k−j

(k − j)! = (T1)j,k, 1 ≤ j, k ≤ N,

(4.82)

where the third equality in (4.82) follows from part (iii) of Lemma 4.1.
By Proposition 3.4 we know that BK is invertible, so by (4.67), we have shown

that

TK = B−1
K AK. (4.83)

Hence, we recover the following result due to Granovskyi and Oridoroga [14]:

Theorem 4.3 ([14, Theorem 3.1]). If Z is defined by (4.26), then the domain of
the Krein–von Neumann extension of HZ,min is characterized by

dom(HZ,K) =




y ∈ dom(HZ,max) :




y(b)
y(1)(b)

...
y(2N−1)(b)


 = TK




y(a)
y(1)(a)

...
y(2N−1)(a)







, (4.84)

where TK is the Toeplitz upper triangular matrix defined by (4.66).

Remark 4.4. The above example reproduces, in full generality, the characterization
of the Krein–von Neumann extension given in [14]. While [14] presents the result with
an elegant proof based on Taylor polynomials, our construction based on Theorem 3.3
and Proposition 3.4 requires the basis {φk,1}2N

k=1 of the kernel of the maximal operator
corresponding to Lemma 3.1. Since this basis may be of some independent interest,
we have presented the complete details of its construction here.
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