PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Parametric study of deep excavation in clays

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most challenging issue when analyzing geotechnical structures by means of finite element method is the choice of appropriate constitutive soil model, especially with reference to serviceability limit states. The paper presents parametric study of a deep excavation in clays aiming to qualify the applicability of different soil constitutive models in such specific soil conditions. Three types of constitutive models are considered in the paper: linear elastic – perfectly plastic model (Mohr-Coulomb) as a simple and well recognized reference, hypoplastic model (Hypoplastic Clay) and nonlinear elasto-plastic cap models (Hardening Soil and Hardening Soil Small). Numerical analysis was performed using two finite element codes – Plaxis and GEO5 FEM both in 2D space and the results were compared to in-situ displacements measurements. The discussion on the suitability of chosen constitutive models for advanced modelling of deep excavation in preconsolidated clays is presented.
Rocznik
Strony
747--754
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Lecha Kaczyńskiego 16 St., 00-637 Warsaw, Poland
Bibliografia
  • [1] H.F. Schweiger, Results from the ERTC7 benchmark exercise, in Proc. 6th European conf. Numerical Methods in Geotechnical Engineering. Taylor&Francis, London (2006).
  • [2] L. Mica, V. Racansky, and J. Chalmovsky, “Technological tunnel centre – numerical analysis by using different constitutive models”, Modern Building Structures, Vilnius Gediminas Technical University (2010).
  • [3] P.V. Lade, “Overview of Constitutive Models for Soils”, Proceedings Soil Constitutive Models: Evaluation, Selection and Calibration Geotechnical Special Publications, No. 128, pp. 1–34, eds. J.A. Yamamuro and V. N. Kaliakin, ASCE (2005).
  • [4] H.F. Schweiger HF, The Role of Advanced Constitutive Models in Geotechnical Engineering, In: Geomechanik und Tunnelbau, 1, 336–344 (2008).
  • [5] D. Kolymbas, The misery of constituive modelling, in: Constitutive Modelling of Granular Materials, Springer-Verlag Berlin Heidelberg, pp. 11‒24 (2000)
  • [6] D. Muir Wood, The role of models in civil engineering, in: Constitutive Modelling of Granular Materials, Springer-Verlag Berlin Heidelberg, pp. 37‒55 (2000)
  • [7] T. Kadlicek, T. Janda, and M. Šejnoha, “Applying hypoplastic model for soft soils to the analysis of anchored sheeting wall” in Acta Geodyn. Geomater., Vol. 13, No. 2 (182), 125–136 (2016).
  • [8] M. Mitew-Czajewska and A. Siemińska-Lewandowska, “The effect of deep excavation on surrounding ground and nearby structures”, Proceedings of the 6th International Symposium (IS-Shanghai 2008), Shanghai, China, Geotechnical Aspects of Underground Construction in Soft Ground / Ng C.W.W., Huang H.W., Liu G.B. (eds), CRC Press/Balkema, 201‒206 (2009).
  • [9] M. Mitew-Czajewska, “Evaluation of hypoplastic clay model for deep excavation modelling”, in: Archives of Civil Engineering, vol. 62, no 4/1, pp. 73‒86 (2016).
  • [10] M. Mitew-Czajewska, “Parametric study of the impact of deep excavation on an existing metro station”, in: Geotechnical Aspects of Underground Construction in Soft Ground: Proceedings of the 9th International Symposium on Geotechnical Aspects of Underground Construction in Soft Grounds (IS-São Paulo 2017) / Negro Arsenio, Cecílio Jr. Marlísio O., CRC Press, pp. 97‒103 (2017).
  • [11] M. Mitew-Czajewska, “FEM modelling of deep excavation – parametric study, Hypoplastic Clay model verification”, in: MATEC Web of Conferences, vol. 117, pp. 1‒6 (2017). DOI:10.1051/matecconf/201711700121
  • [12] D.M. Potts and L. Zdravkovič, Finite element analysis in geotechnical engineering theory, Thomas Telford, London, 1999.
  • [13] T. Godlewski, G. Kacprzak, and M. Witowski, „Practical evaluation of geotechnical parameters of soils for the design of diaphragm walls embedded in Warsaw’s Pliocene clays”, in: Civil and environmental engineering, vol. 4, No.1, 13‒19 (2013) [in Polish].
  • [14] T. Godlewski, “Observations of displacements induced by deep excavation on the example of A19 metro station in Warsaw”, in: Building materials 3/2008, 60‒63 (2008) [in Polish].
  • [15] M. Korff and F.J. Kaalberg, “Monitoring dataset of deformations related to deep excavations for North-South Line in Amsterdam” Geotechnical Aspects of Underground Construction in Soft Ground – Yoo, Park, Kim & Ban (Eds), Korean Geotechnical Society, Seoul, Korea, pp. 321‒326 (2014).
  • [16] Z. Muszyński, J. Rybak, and A. Szot, “Monitoring of structures adjacent to deep excavations, Underground infrastructure of urban areas 2, International Conference on Underground Infrastructure of Urban Areas. Wrocław. October 22‒24, 2008, CRC Press/Balkema, pp. 177‒183 (2012).
  • [17] M. Cudny, Some aspects of the constitutive modelling of natural fine grained soils, IMOGEOR, Gdańsk 2013.
  • [18] D. Kolymbas, “An outline of hypoplasticity”, Archive of Applied Mechanics 61, 143‒151 (1991).
  • [19] D. Mašín, “A hypoplastic constitutive model for clays”, in: International Journal for Numerical and Analytical Methods in Geomechanics 29, No. 4, 311‒336 (2005).
  • [20] D. Mašín, Hypoplastic models for fine-grained soils, dissertation, Charles University, Prague, 2006.
  • [21] T. Kadlicek, T. Janda, and M. Šejnoha, “Calibration of hypoplastic models for soils”, in: Applied mechanics and materials, Vol. 821, 503‒511 (2015).
  • [22] J. Young-Hoon and K. Taesik, “Stiffness reduction in soft Chicago clay during deep urban excavations”, Geotechnical Aspects of Underground Construction in Soft Ground – Yoo, Park, Kim & Ban (Eds), Korean Geotechnical Society, Seoul, Korea, pp. 287‒291 (2014)
  • [23] T. Schanz, P.A. Vermeer, and P.G. Bonnier, “The Hardening Soil Model: Formulation and Verification”, Beyond 2000 in Computational Geotechnics – 10 years PLAXIS. Balkema, Rotterdam, 1999.
  • [24] A. Truty and R. Obrzud, “Improved formulation of the Hardening Soil model in the context of modeling the undrained behavior of cohesive soils”, in: Studia Geotechnica et Mechanica 37 (2), 61–68 (2015).
  • [25] T. Benz, Small-strain stiffness of soils and its numerical consequences, dissertation, Universitat Stuttgart, 2007.
  • [26] A. Amorosi, D. Boldini, G. de Felice, M. Malena, and G. di Mucci, „Numerical modelling of the interaction between a deep excavation and an ancient masonry wall”, Geotechnical Aspects of Underground Construction in Soft Ground – Yoo, Park, Kim & Ban (Eds), Korean Geotechnical Society, Seoul, Korea, pp. 245‒250 (2014).
  • [27] B. Gebreselassie and H.-G. Kempfert, “Sensitivity study of the hardening soil model parameters based on idealized excavation”, in: Prediction, analysis and design in geomechanical applications, G. Barla and M. Barla eds. Proceedings of the Eleventh International Conference on Computer Methods and Advances in Geomechanics, Torino, Italy, 2005.
  • [28] E. Romani, R. Sorge, G. Guiducci, A. Lucarelli, and G. Furlani, “Deep excavation of Malatesta Station in Rome: Design, construction and measures”, in: Geotechnical Aspects of Underground Construction in Soft Ground – Viggiani (ed), Taylor & Francis Group, London, pp. 301‒308, (2012).
  • [29] N. Phien-Wej, M. Humza, and Z. Zaw Aye, “Numerical modeling of diaphragm wall behaviour in Bangkok soil using hardening soil model”, in: Geotechnical Aspects of Underground Construction in Soft Ground – Viggiani (ed), Taylor & Francis Group, London, pp. 715‒722, (2012).
  • [30] A.E. Totsev, “Deep excavation in Bulgaria – comparison of measured and computed performance” in: Geotechnical Aspects of Underground Construction in Soft Ground – Viggiani (ed), Taylor & Francis Group, London, pp. 807‒812, (2012).
  • [31] G. Viggiani and J.H. Atkinson, Stiffness of fine-grained soils at very small strains, Géotechnique, 1995, 45(2), 249–265. DOI: 10.1680/geot.1995.45.2.249.
  • [32] M. Superczyńska, K. Józefiak, and A. Zbiciak, “Numerical analysis of diaphragm wall model executed in Poznań clay formation applying selected FEM codes”, in: Archives of Civil Engineering Vol. LXII, Issue 3: 207‒224 (2016).
  • [33] A. Truty and K. Podleś, “Application of hardening soil-small model for analysis of soil-structure interaction problems”, in: Technical transactions, Environmental Engineering 107 (16), 117‒134 (2010) [in Polish].
  • [34] R. Kaczyński, Geology-engineering conditions in Poland, Polish Geological Institute National Research Institute, Warsaw, 2017 [in Polish].
  • [35] M. Superczyńska, “Geology-engineering evaluation of Poznań formation clays as construction subsoil“, dissertation, Warsaw University of Technology, 2015 [in Polish].
  • [36] M. Superczyńska, “Values of the stiffness parameters of Poznań formation clays from Warsaw in small and medium strain ranges”, in: Maritime Engineering and Geotechnics vol. 3/2015, 207‒211 (2015) [in Polish].
  • [37] R. Kuszyk, M. Superczyńska, and A. Lejzerowicz, “The methods of determination of elastic parameters of Pliocene clays for the 2nd metro line in Warsaw”, in: Transportation Overview 9, 59‒63. (2012) [in Polish].
  • [38] T. Godlewski and M. Wszędyrówny-Nast, “Correlations of regional geotechnical parameters on the basis of CPTU and DMT tests”, in: “Historical Experience and Challenges of Geotechnical Problems in Baltic Region” Proceedings of 13th Baltic Sea Geotechnical Conference, Vilnius Gediminas Technical University (VGTU) Press, pp. 22‒27 (2016).
  • [39] T. Godlewski and T. Szczepański, “Determination of soil stiffness parameters using in-situ seismic methods-in sight in repeatability and methodological aspects” in: Geotechnical and Geophysical Site Characterization 4, Coutinho & Mayne (eds), Taylor & Francis Group, London, pp. 441‒446 (2013).
  • [40] GEO5 Users manual, Prague, Czech Republic, 2018.
  • [41] Plaxis 2D Manuals, Delft, The Netherlands, 2017.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b617753-6766-4159-a098-75025bc6f390
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.