PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elektrołukowa synteza nanorurek węglowych w warunkach lokalnej równowagi termodynamicznej

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Tematyka pracy obejmuje podsumowanie dotychczasowych prac autora dotyczących wykorzystania elektrołukowych metod syntezy nanorurek węglowych przy obniżonym ciśnieniu. Mimo iż w zastosowanym układzie ciśnienie gazu roboczego jest w przybliżeniu o połowę niższe od ciśnienia atmosferycznego, to w kanale łukowym występuje głównie jonizacja zderzeniowa – termiczna. Dlatego przyjęto w takim przypadku stan plazmy zbliżony do lokalnej równowagi termodynamicznej. Omówione zagadnienia dotyczą wpływu parametrów wyładowania łukowego na parametry plazmy, a w konsekwencji parametry strumienia par węgla, w którym atomy węgla łączą się w nanorurki węglowe i osadzają się w postaci depozytu na katodzie lub w postaci mieszaniny sadzy, węgla amorficznego i nanorurek na ścianach komory reaktora. Zagadnienia referowane w rozprawie w szczególności dotyczą: wpływu katalizatorów na syntezę nanorurek węglowych, dynamiki transferu par węgla tworzącego depozyt, wpływu parametrów łuku na rozkład temperatury w biorącej udział w procesie anodzie i katodzie (depozycie katodowym) oraz syntezy nanorurek węglowych w polu magnetycznym. W pierwszej kolejności przedstawiono podstawy teoretyczne nanotechnologii oraz dokonano wprowadzenia do tematyki związanej z nanocząsteczkami węglowymi – opisano różnice pomiędzy najczęściej spotykanymi fulerenami, nanorurkami, nanodrutami, grafenem i nanowłóknami. Następnie skupiono się na nanorurkach węglowych – ich właściwościach i budowie. Oddzielną część stanowi opis metod charakteryzacji, których obecny rozwój następuje w sposób równie gwałtowny jak rozwój nanotechnologii. Na koniec przedstawiono metody oczyszczania i syntezy nanorurek węglowych. Druga część rozprawy została poświęcona przedstawieniu własnych doświadczeń związanych z łukowymi metodami syntezy nanorurek węglowych. Opisano tutaj skonstruowane stanowisko badawcze, przedstawiono wyniki badań przy wprowadzaniu do układu dodatkowego katalizatora. Zaproponowano nowe sposoby wyznaczania masy par węgla w połączeniu ze znanymi modelami charakterystycznymi dla łuku krótkiego. W pracy zamieszczono także rozważania dotyczące zastosowania pola magnetycznego wspomagające proces wzrostu depozytu katodowego. Uzyskane wyniki badań i obliczeń mają duże znaczenie praktyczne w zakresie modelowania zjawisk zachodzących podczas syntezy nanomateriałów metodami łukowymi. Nowe podejście do problemu pozwoli na udoskonalenie stosowanych obecnie technologii i zwiększenie wydajności syntezy nanorurek węglowych. Badania przedstawione w niniejszej pracy były częściowo finansowane przez Ministerstwo Nauki i Szkolnictwa Wyższego jako projekty badawcze w latach 2009-2013 – projekt badawczy „Właściwości łuku elektrycznego determinujące proces syntezy nanorurek węglowych” [Raniszewski i in. 2013] oraz projekt badawczy „Badanie wpływu zewnętrznego pola magnetycznego na właściwości plazmy łukowej warunkujące efektywną syntezę nanorurek węglowych” [Kołaciński i in. 2012b].
EN
The presented work describes a summary of author's experiences related to electric arc discharge methods of carbon nanotubes synthesis under reduced pressure. Although the applied systems use approximately half of the atmospheric pressure, author expects that in the arc channel mainly thermal (ionization) collisions occur. Therefore it is assumed that the plasma is in the near local thermodynamic equilibrium state (LTE). The discussed problems concern the influence of the arc parameters on plasma channel temperature, composition, partial pressure etc. and, in consequence, the parameters of the vapor stream. This stream forms deposit on the cathode surface which contains carbon nanotubes. Carbon elements may also be collected on the reactor walls as a mixture of soot, amorphous carbon and carbon nanotubes. Issues referred in this work are particularly connected with influence of catalysts on carbon nanotubes synthesis, dynamics of carbon mass transfer from anode to cathode, the influence of the arc parameters on temperature distribution in electrodes and cathode deposit, the synthesis of carbon nanotubes supported by a magnetic field. First chapters present the theoretical background of nanotechnology. Then the differences between carbon nanoparticles are described. Author focused on carbon nanotubes - their properties and structure. A separate chapter describes methods of carbon nanotubes characterization. Finally purification methods were described. The author's own experimental results were described in the second part of the thesis. This part describes constructed research set-ups, presents the results of investigations of carbon nanotubes synthesis with and without catalyst. New methods for determining of carbon atom mass flux were proposed. These methods employ known models characteristics for short arc discharge. The work also includes a discussion of the application of a magnetic field to support the cathode deposit growth process. The results of experiments and calculations have a great practical potential in modeling of phenomena which occur during the synthesis process. A new approach to the problem will improve the currently used technologies and increase the carbon nanotubes creation efficiency. The research presented here was partially financed by the Ministry of Science and Higher Education as research projects in 2009-2013.
Rocznik
Tom
Strony
1--160
Opis fizyczny
Bibliogr. 318 poz., il. kolor., fot., wykr.
Twórcy
  • Instytut Mechatroniki i Systemów Informatycznych Politechniki Łódzkiej
Bibliografia
  • 1. Ajayan P.M., 1995, Carbon nanotubes: a new graphite architecture. Condensed Matter News, 4(4), 9-17.
  • 2. Ajayan P.M., Ebbesen, T.W., Ichihashi T., Iijima S., Tanigaki K., Hiura H., 1993, Opening carbon nanotubes with oxygen and implications for filling. Nature, 362, 6420, s. 522-525.
  • 3. Ajayan P.M., Colliex C., Lambert J.M., Bernier P., Barbedette L., Tence M., Stephan O., 1994, Growth of manganese filled carbon nanofibers in the vapor phase, Physical Review Letters, Volume 72, Issue 11, s. 1722-1725.
  • 4. Aldersey-Williams H., 1995, The Most Beautiful Molecule, The Discovery of the Buckyball, John Wiley and Sons, Inc., New York.
  • 5. Alexandre M., 2007, Effect of a Magnetic Field on the Synthesis of Sigle-Walled Carbon Nanotubes, NNIN REU, Research Accomplishments, s. 116-117.
  • 6. Anazawa K, Shimotani K., Manabe C., Watanabe H., Shimizu M., 2002, High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field, Applied Physics Letters, Vol. 81, Issue 4, s. 739-741.
  • 7. Anazawa K., Watanabe H., Kishi K, Hirakata M., Shimizu M., 2008, Manufacturing apparatus and method for carbon nanotube, US Patent 7, 364, 709 B2, 29.04.2008.
  • 8. Ando Y.Y., Zhao X., Hirahara K., Suenaga K., Bandow S., Iijima S., 2000, Mass production of single-wall carbon nanotubes by the arc plasma jet method, Chemical Physics Letters, 323, s. 580-585.
  • 9. Andrews R., Jacques D., Rao A.M., Derbyshire F., Qian D., Fan X., Dickey E.C., Chen J., 1999, Continuous production of aligned carbon nanotubes: a step closer to commercial realization, Chemical Physics Letters, 303, 467-474.
  • 10. Azonano.com, 2013, Comprehensive Report on Global Carbon Nanotubes Market, February 2013, http://www.azonano.com/news.aspx?newsID=26623 [dostęp: 6 maja 2013].
  • 11. Bachmatiuk A., Badania nad technologią otrzymywania i właściwościami nanorurek węglowych, praca doktorska, Politechnika Szczecińska, Szczecin, 2008.
  • 12. Balasubramanian K., Burghard M., 2005, Chemically Functionalized Carbon Nanotubes, Small, Volume 1, Issue 2, s. 180-192.
  • 13. Bandow S., Rao A.M., Williams K.A., Thess A., Smalley R.E., Eklund P.C., 1997, Purification of single-wall carbon nanotubes by microfiltration, Journal of Physical Chemistry Journal of Physical Chemistry B, 101 (44), s. 8839-8842.
  • 14. Bao J., Zhou Q., Hong J., Xu Z., 2002, Synthesis and magnetic behavior of an array of nickel-filled carbon nanotubes. Applied Physics Letters, 81, s. 4592-4594.
  • 15. Beilis I., Keidar M., Boxman R.L., Goldsmith S., 2000, Interelectrode plasma parameters and plasma deposition in a hot refractory anode vacuum arc, Physics of Plasmas, Vol. 7, No. 7, s. 3068-3076.
  • 16. Beilis I., Keidar M., Boxman R.L., Goldsmith S., Heberlein J., Pfender E., 1999, Radial plasma flow In a hot anode vacuum arc, Journal of Applied Physics Letters. Vol. 86, 1, s. 114-119.
  • 17. Benea L., Bonora P.L., Borello A., Martelli S., Wenger F., Ponthiaux P., Gallang J., Preparation and investigation of nanostructured SiC-nickel layers by electrodeposition, Solid State Ionics, 151, 2002, s. 89-95.
  • 18. Berkmans A.J., Haridoss P., 2011, High yield formation of carbon nanotubes using arc discharge assisted with a nitrogen jet, Transactions of The Indian Institute of Metals Vol. 64, Issues 1 & 2, February-April 2011, pp. 137-142.
  • 19. Berkmans A.J., Ramakrishnan S., Jain G., Haridoss P., 2012, Aligning carbon nanotubes, synthesized using the arc discharge technique, during and after synthesis, Carbon, 55, 2, 185-195.
  • 20. Bernier P., Laplaze D., Auriol J., Barbedette L., Flamant G., Lebrun M., Brunelle A., Della-Negra S., 1995, Production of fullerenes from solar energy, Synthetic Metals, Volume 70, Issue 1-3, s. 1455-1456.
  • 21. Bethune D.S., Kiang C.H., de Vries M.S., Gorman G., Savoy R., Vazquez J., Bayers R., 1993: Cobalt-catalysed growth of carbon nanotubes with single-atomic layer walls, Nature 363, s. 605-607.
  • 22. Bianco A., Kostarelos K., Prato M., 2005, Applications of carbon nanotubes in drug delivery, Current Opinion in hemical Biology, 9, s. 674-679.
  • 23. Biró L.P., Horvath Z.E., Szalmas L., Kertesz K., Weber F., Juhasz G., Radnoczi G., Gyulai J., 2003, Continuous carbon nanotube production in underwater AC electric arc, Chemical Physics Letters 372, s. 399-402.
  • 24. Boboli K., praca zb., 1972, Zagadnienia podstawowe spektralnej analizy widmowej, red. nauk. Gajewski J., WNT, Warszawa, 205-211.
  • 25. Bochvar D.A., Gal’pern E.G., 1973, Calculation of hypothetical systems: carbodo-decahedron (C20) and various diboracarbododecahedrons (B2C18) by the expanded Hückel method, Bulletin of the Academy of Sciences of the USSR, Division of chemical science, Volume 23, Issue 10, s. 2282-2284.
  • 26. Bokobza L., Zhang J., 2012, Raman spectroscopic characterization of multiwall carbon nanotubes and of composites, eXPRESS Polymer Letters, Vol. 6, No. 7, pp. 601-608.
  • 27. Bolanowski B., 1964, Bilans mocy łuku prądu stałego niskiego napięcia ze szczególnym uwzględnieniem obszaru przykatodowego, Praca doktorska PŁ.
  • 28. Bonard J.M., Stora T., Salvetat J.P., Maier F., Stockli T., Duschl C., Forro L., de Heer W.A., Chatelain A., 1997, Purification and size-selection of carbon nanotubes, Advanced Materials, 9 (10), s. 827-831.
  • 29. Borkowski P., 2008, Modelowanie i badanie erozji styków, Zeszyty Naukowe PŁ, Łódź, nr 1014.
  • 30. Bradley D., Graphene straintronics: Carbon, Materials Today, Vol. 15, Issue 5, 2012, s. 185.
  • 31. Celnik M., West R., Morgan N., Kraft M., Moisala A., Wen J., Green W., Richter H., 2008, Modelling gas-phase synthesis of single-walled carbon nanotubes on iron catalyst particles, Carbon 46, s. 422-433.
  • 32. Chandrasekaran A.R., Venugopal J., Sundarrajan S., Ramakrishna S., 2011, Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration, Biomedical Materials, 6, No. 1, 10 pages.
  • 33. Chang S.H., Fang Y.K., Hsu, K.C., Wei T.C., 2008, GaN UV MSM photodetector on porous β-SiC/(111)Si substrates, Sensors & Actuators: A. Physical, Volume147, Issue 1, s. 1-5.
  • 34. Chemical Worldwide Business Sp. z o.o, 2008, Karta charakterystyki substancji chemicznej. Grafit. Aktualizacja z 2.04.2008.
  • 35. Chen Y.J., Green M.L.H., Griffin J.L., Hammer J., Lago R.M., Tsang S.C., 1996, Purification and opening of carbon nanotubes via bromination. Advanced Materials, 8 (12), s. 1012-1015.
  • 36. Chhowalla M., Teo K.B.K., Ducati C., Rupesinghe N.L., Amaratunga G.A.J., Ferrari A.C., Roy D., Robertson J., Milne W.I., 2001, Growth Process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. Journal of Applied Physics, Vol. 90, Issue 10, s. 5308-5317.
  • 37. Chiang I.W., Brinson B.E., Huang A.Y., Willis P.A., Bronikowski M.J., Margrave J.L., Smalley R.E., Hauge R.H 2001a, Purification and characterization of single-wall carbon nanotubes (SWCNTs) obtained from the gas-phase decomposition of CO (HiPco Process). Journal of Physical Chemistry B, 105(35), s. 8297-8301.
  • 38. Chiang I.W., Brinson B.E., Smalley R.E., Margrave J.L., Hauge R.H., 2001b, Purification and characterization of single-wall carbon nanotubes. Journal of Physical Chemistry B, 105 (6), s. 1157-1161.
  • 39. Chibante L.P.F., Thess A., Alford J.M., Diener M.D., Smalley R.E., 1993, Solar generation of the fullerenes, Journal of Physical Chemistry, Vol. 97, Issue 34, s. 8696-8700.
  • 40. Choi S.I., Nam J.S., Kim J.I., Hwang T.H., Seo J.H., Hong S.H., 2006, Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma, Thin Solid Films 506-507, s. 244-249.
  • 41. Chopra K.L., Paulson P.D., Dutta V., Thin-film solar cells: an overview, Progress in Photovoltaics: Research and Applications, Vol. 12, Issue 2-3, s. 69-92.
  • 42. Cohen-Tanugi D., Grossman J.C., Water desalinationa across nanoporous graphene, Nano Letters, 2012, 12 (7), s. 3602-3608.
  • 43. Coleman J.N., O’Brien D., Dalton A.B., McCarthy B., Lahr B., Drury A., Barklie R.C., Blau W.J., 2001, Measurement of nanotube content in pyrolytically generated carbon soot, Chemical Communications, s. 2001-2002.
  • 44. Colomer J.F., Piedigrosso P., Fonseca A., Nagy J.B., 1999, Different purification methods of carbon nanotubes produced by catalytic synthesis. Synthetic Met., 103 (1-3), s. 2482-2483.
  • 45. Cricchio D., Corso P.P., Fiordilino E., Orlando G., Persico F., 2009, A paradigm of fullerene. Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 42, Number 8, 085404.
  • 46. Dervishi E., Li Z., Biris A.R., Lupu D., Trigwell S., Biris A.S., 2007, Morphology of multi-walled carbon nanotubes affected by the thermal stability of the catalyst system, Chemistry of Materials, 19, 2, s. 179-184.
  • 47. Dervishi E., Li Z., Xu Y., Saini V., Biris A.R., Lupu D., Biris A.S., 2009, Carbon nanotubes: Synthesis, Properties, and Applications, Particulate Science and Technology, 27, s. 107-125.
  • 48. Disch R.L., Schulman J.M., 1986, On symmetrical clusters of carbon atoms: C60, Chemical Physics letters, Volume 125, Issue 5-6, s. 465-466.
  • 49. Drawin H.W., Felenbok P., 1965, Data for plasmas in local thermodynamic equilibrium, Gauthier-Villars.
  • 50. Dresselhaus M.S., Dresselhaus G., Avouris P. (eds.), 2001, Topics in Applied Physics, Vol. 80: Carbon Nanotubes: Synthesis,Structure, Properties, and Applications. Berlin, Springer.
  • 51. Dresselhaus M.S., Dresselhaus G., Jorio A., Souza Filho A.G., Saito R., 2002, Raman spectroscopy on isolated single wall carbon nanotubes, Carbon 40, Issue 12, s. 2043-2061.
  • 52. Dujardin E., Ebbesen T.W., Krishnan A., Treacy M.M.J., 1998, Purification of single-shell nanotubes. Advanced Materials, 10, (8), s. 611-613.
  • 53. Dyagileva L.M., Mar’in V.P., Tsyganova E.I., Razuvaev G.A., 1979, Reactivity of the first transition row metallocenes in thermal decomposition reaction. Journal of Organometallic Chemistry, Volume 175, Issue 1, s. 63-72.
  • 54. Ebbesen T.W., 1995, Nanotubes, nanoparticles, and aspects of fullerene related materials, Journal of Physics and Chemistry of Solids, Volume 58, Issue 11, s. 1979-1982.
  • 55. Ebbesen T.W., Ajayan, P.M., 1992, Large-scale synthesis of carbon nanotubes, Nature 358, s. 220-222.
  • 56. Ebbesen T.W., Ajayan P.M., Hiura H., Tanigaki K., 1994, Purification of nanotubes. Nature, 367, (6463), s. 519.
  • 57. Ecker G., 1961, Electrode components of the arc discharge, Ergebenisse der Exakten Naturwissenschaften, Volume 33, s. 1-104.
  • 58. Eda G., Fanchini G., Chhowalla M., 2008, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nanotechnology, 3 (5), s. 270-274.
  • 59. Elias K.E., Price R.L., Webster T.J., 2002: Enhanced functions of osteoblasts on nanometer diameter carbon nanofibers, Biomaterials, 23 , s. 3279-3287.
  • 60. Elser V., Haddon R.C., 1987, Magnetic behavior of icosahedral Csub60, Physical Review A 36 (1987), p. 4579-4584.
  • 61. Fang H.T., Liu C.G., Liu C., Li F., Liu M., Cheng H.M., 2004, Purification of single-wall carbon nanotubes by electrochemical oxidation. Chemistry of Materials, 16 (26), s. 5744-5750.
  • 62. Farhat S., De La Chapelle M.L., Loiseau A., Scott C.D., Lefrant S., Journet C., Bernier P., 2001, Diameter control of single-walled carbon nanotubes using argon-helium mixture gases, Journal of Chemical Physics, Volume 115, Issue 14, s. 6752-6759.
  • 63. Fetterman A., Raitses Y., Keidar M., 2008, Enhanced ablation of small anodes in a carbon nanotube arc plasma, Carbon 46, Issue 10, s. 1322-1326.
  • 64. Flahaut E., Govindaraj A., Peigney A., Laurent Ch., Rousset A., Rao C.N.R., 1999, Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions, Chemical Physics Letters, Volume 300, Issues 1-2, s. 236-242.
  • 65. Gamaly E.G., Ebbesen T.W., 1995, Mechanism of carbon nanotube formation in the arc discharge, Physical Review B, 52 (3), s. 2083-2089.
  • 66. Geim A.K., 2010, Random walk to graphene, Nobel lecture. s. 70-95.
  • 67. Geim A.K., Novoselov K.S., 2007, The rise ofgraphene, Nature Materials 6, s. 183-192.
  • 68. Gomez De Arco, L., Zhang Y., Schlenker C.W., Ryu K., Thompson M.E., Zhou C., Continuous, highly flexible, and transparent grapheme films by chemical vapor deposition for organic photovoltaics, ACS Nano, 2010, 4 (5), 2865-2873.
  • 69. Grad S., Kupcsik L., Górna K., Gogoglewski S., Alini M., 2003, The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations, Biomaterials, 24, s. 5163-5171.
  • 70. Grande D.A., Halberstadt C., Schwartz R., Manji R., 1997: Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts, Journal of Biomedical Materials Research, 34, s. 211-220.
  • 71. Grobert N., Terrones M., Osborne A., Terrones H., Hsu W., Trasobares S., Zhu Y., Hare J., Kroto H., Walton D., 1998, Thermolysis of C60 thin films yields Ni-filled tapered nanotubes. Applied Physics A-Materials, 67, s. 595-598.
  • 72. Gui X., Wei J., Wang K., Wang W., Lv R., Chang J., Kang F., Gu J., Wu D., 2008, Improved filling rate and enhanced magnetic properties of Fe-filled carbon nanotubes by annealing and magnetic separation. Materials Research Bulletin, 43, s. 3441-3446.
  • 73. Guillard T., Cetout S., Alvarez L., Sauvajol J.L., Anglaret E., Bernier P., Flamant G., Laplaze D., 1999, Production of carbon nanotubes by the solar route, European Physical Journal, 5, s. 251-256.
  • 74. Guillard T., Flament G., Robert J.F., Rivoire B., Giral J., Laplaze D., 2002, Scale up of a Solar Reactor for Fullerene and Nanotube Synthesis, Journal of Solar Energy Engineering. 124 (1), s. 22-27.
  • 75. Guo T., Nikolaev P., Rinzler A.G., Tomanek D., Colbert D.T. i Smalley R.E., 1995, Self-assembly of tubular fullerenes, Journal of Physical Chemistry, 99 (27), s. 10694-10697.
  • 76. Guo J., Wang X., Yao Y., Yang X., Liu X., Xua B., 2007, Structure of nanocarbons prepared by arc discharge in water, Materials Chemistry and Physics 105, s. 175-178.
  • 77. Haddon R.C., Brus L.E., Raghavachari K., 1986, Electronic structure and bonding in icosahedral C60, Chemical Physics Letters, 125 (1986), s. 459-464.
  • 78. Hampel S., Leonhardt A., Selbmann D., Biedermann K., Elefant D., Müller C., Gemming T., Büchner B., 2006, Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon, 44, s. 2316-2322.
  • 79. Harris P., 2007, Solid state growth mechanism for carbon nanotubes, Carbon 45, 229-239.
  • 80. Hart A.J., 2007, Discussion on state of the art in growing CNT forests by CVD. w: Kuhn DS, (ed.) Conversation ed. Cambridge 2007.
  • 81. Harutyunyan A.R., Pradhan B.K., Chang J.P., Chen G.G., Eklund P.C., 2002, Purification of single-wall carbon nanotubes by selective microwave heating of catalyst, Journal of Physical Chemistry B, 106 (34), s. 8671-8675.
  • 82. Hata K., Futaba N., Mizuno K., Namai T., Yumura M., Iijima, S., 2004, Water- assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, Volume 306, Number 5700, s. 1362-1364.
  • 83. He W., Yong T., Teo W.E., Ma Z.W., Ramakrishna S., 2005, Fabrication and endothelialization of collagen-blended biodegradable polymer nanofiber: potential vascular grafts for the blood vessel tissue engineering, Tissue Engineering 11, s. 1574-1588.
  • 84. Heben M.J., Bekkedhal, T.A., Schultz D.L., Jones K.M., Dillon A.C., Curtis C.J., Bingham C., Pitts J.R., Lewandowski A., Fields C.L., 1996, Production of single wall carbon nanotubes using concentrated sunlight, w: Proc. Symp. Recent Adv. Chem. Phys. Fullerenes Rel. Mater., Pennington 1996, K.M. Kadish, R.S. Ruoff (ed.), Electrochemical Society, Pennington 1996, s. 803-811.
  • 85. Hernadi K., Siska A., Thien-Nga L., Forro L., Kiricsi I., 2001, Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes, Solid State Ionics, 141, s. 203-209.
  • 86. Hilder T.A., Hill J.M., 2006, Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes. Journal of Controlled Release, 58, s. 1460-1470.
  • 87. Hilder T.A., Hill J.M., 2009, Modeling the Loading and Unloading of Drugs into Nanotubes. Small, 5, s. 300-308.
  • 88. Hinkov I., Farhat S., Scott C.D., 2005, Influence of the gas pressure on single-wall carbon nanotube formation, Carbon 43, Issue 12, s. 2453-24.
  • 89. Hiura H., 1995, Synthesis, Purification and Properties of Carbon Nanotubes, Molecular Crystals and Liquid Crystals, Volume 267, s. 266-267.
  • 90. Holi A., Kołaciński. Z., 1982, Impulsowy model stopy katodowej. Cz. II Opracowanie ITMA Nr 1179/305/82.
  • 91. Hou P.X., Bai S., Yang Q.H., Liu C., Cheng H.M., 2002, Multi-step purification of carbon nanotubes. Carbon, 40(1), s. 81-85.
  • 92. Hou P.X., Liu C., Cheng H.M., 2008, Purification of carbon nanotubes, Carbon 46, s. 2003-2025.
  • 93. Hsu W.K., Terrones M., Hare J.P., Terrones J.P., Kroto H.W., Walton, D.R.M., 1996, Electrolytic formation of carbon nanostructures, Chemical Physics Letters, Volume 262, Issuea 12, s. 161-166.
  • 94. Hu H., Yu A.P., Kim E., Zhao B., Itkis M.E., Bekyarova E., Haddon R.C., 2005, Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes, Journal of Physical Chemistry B, 109 (23), s. 11520-11524.
  • 95. Hu H., Zhao B., Itkis M.E., Haddon R.C., 2003, Nitric acid purification of single-walled carbon nanotubes, Journal of Physical Chemistry B, 107 (50), s. 13838-13842.
  • 96. Huber J.G., Romero J.G.V., Spivey J.D., Luengo C.A., 2001, A bench arc furnace facility for fullerene and single wall nanotubes synthesis, Quim. Nova, Vol. 24, No.6, s. 898-900.
  • 97. Huczko A., 2004, Nanorurki węglowe. Czarne diamenty XXI wieku, Uniwersytet Warszawski, Warszawa.
  • 98. Huczko A., Lange H., Sogabe T., 2000, Influence of Fe and Co/Ni on carbon arc plasma and formation of fullerenes and nanotubes, J. Phys. Chem. A., Vol. 104 (46), s. 10708-10712.
  • 99. Iijima, S., 1991, Helical microtubules of graphite carbon, Nature 354, s. 56-58.
  • 100. Iijima S., Ichihashi T., 1993, Single-shell carbon nanotubes of 1-nm diameter, Nature 363, s. 603-605.
  • 101. Ikazaki F., Ohshima S., Uchida K., Kuriki Y., Hayakawa H., Yumura M., Takahashi K., Tojima K., 1994, Chemical purification of carbon nanotubes by use of graphite-ntercalation compounds. Carbon, Volume 32, Issue 8, s. 1539-1542.
  • 102. Inguanta R., Piazza S., Sunseri C., 2008, Influence of elcetrodeposition techniques on Ni nanostructures, Electrochemica Acta, 53, s. 5766-5773.
  • 103. Jacob M.V., Easton C.D., Woods G.S., Berndt C.C., 2008, Fabrication of a novel organic polymer thin film, Thin Solid Films, Volume 516, Issue 12, s. 3884-3887.
  • 104. Jayatissa A.H., Guo K, 2009, Synthesis of carbon nanotubes at low temperature by filament assisted atmospheric CVD and their field emission characteristics. Vacuum, 83, s. 853-856.
  • 105. Jeong S.H., Kim K.K., Jeong S.J., An K.H., Lee S.H., Lee Y.H., 2007, Optical absorption spectroscopy for determining carbon nanotube concentration in solution. Synthetic Metals, 157 (13-15), s. 570-574.
  • 106. Jeong T., Kim W.Y., Haha Y.B., 2001, A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas, Chemical Physics Letters, 344 (1-2), s. 18-22.
  • 107. Jeynes J.C.G., Mendoza E., Chow D.C.S., Watts P.C., McFadden J., Silva S.R.P., 2006, Generation of chemically unmodified pure singlewalled carbon nanotubes by solubilizing with RNA and treatment with ribonuclease, Advanced Materials, Volume 18, Issue 12, s. 1598-1602.
  • 108. Jones, G.R., Leclerc, J.L., Smith, M.R., 1982, Self-magnetic effects in a model gas-blast circuit breaker at very high currents, IEE Proceedings A, Volume 129, Issue 8, s. 611-618.
  • 109. Jorio A., Pimenta M.A., Souza Filho A.G., Saito R., Dresselhaus G., Dresselhaus M.S., Characterizing carbon nanotube samples with resonance Raman scattering, New Journal of Physics, 5 (2003), s. 139.1-139.17.
  • 110. Jose-Yacaman M., Miki-Yoshida M., Rendon L., Santiesteban J.G., 1993, Catalytic growth of carbon microtubules with fullerene structure, Applied Physics Letters, 62, s. 657-659.
  • 111. Journet C., Maser W.K., Bernier P., Loiseau A., Lamy de la Chapelle M., Lefrant S., Deniard P., Lee R., Fischer J.E., 1997, Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388, Issue 6644, s. 756-758.
  • 112. Karan S., Samitsu S., Peng X., Kurasjima K., Ichinose I., Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets, Science 27, 2012, Volume 335, Number 6067, s. 444-447.
  • 113. Kataura H., Kumazawa Y., Maniwa Y., Umezu I, Suzuki S., Ohtsuka Y., Achiba Y., 1999, Optical properties of single-wal carbon nanotubes, Sythetic Metals, 103, s. 2555-2558.
  • 114. Katoh R., Tasaka Y., Sekreta E., Yumura M., Ikazaki F., Kakudate Y., Fujiwar A.S., 1999, Sonochemical production of carbon nanotube, Ultrasonics Sonochemistry, Volume 6, Issue 4, s. 185-187.
  • 115. Katoh R., Yanase E., Yokoi H., Usuba S., Kakudate Y., Fujiproduced S., 1998, Possible new route for the production of C6 by ultrasound, Ultrasonic Sonochemistry, Volume 5, Issue 1, s. 37-38.
  • 116. Keidar M., Fan J., Boyd I.D., Bellis I.I., 2001, Vaporization of heated materials into discharge plasmas, Journal of Applied Physics 89, 3095-3098.
  • 117. Keidar M., Waas A.M., 2004, On the conditions of carbon nanotube growth in the arc discharge, Nanotechnology, Volume 15, Number 11, s. 1571-1575.
  • 118. Keidar M., 2007, Factors affecting synthesis of single wall carbon nanotubes in arc discharge, Journal of Physics D: Applied Physics, Volume 40, Number 8, s. 2388-2393.
  • 119. Keidar M., Beilis I.I., 2009, Modeling of atmospheric-pressure anodic column arc producing carbon nanotubes, Journal of Applied Physics 106, 103304 (6 stron).
  • 120. Keidar M., Beilis, I.I., Boxman R.L., Goldsmith S., 1996, 2D expansion of the low-density interelectrode vacuum arc plasma jet in an axial magnetic field, Journal of Physics D: Applied Physics, Volume 29, Number 7, s. 1973-1983.
  • 121. Keidar M., Levchenko I., Arbel T., Alexander M., Waas A.M., Ostrikov K.K., 2008a, Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge, Applied Physics Letters, Volume 92, Issue 4, p.043129 (3 strony).
  • 122. Keidar M., Levchenko I., Arbel T., Alexander M., Waas A.M., Ostrikov K.K., 2008b, Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge, Journal of Applied Physics, Volume 103, Issue 9, p.094318 (8 stron).
  • 123. Keidar M., Waas A.M., Raitses Y., Waldorff E., 2006, Modeling of the anodic arc discharge and conditions for single-wall carbon nanotube growth, Journal of Nanoscience and Nanotechnology 6, s. 1309-1314.
  • 124. Kelsall R.W., Hamley I.W., Geoghegan M., 2008, Nanotechnologie, PWN, Warszawa, tłum. Kurzydłowski K., Lewandowska M., Ferenc J., Kłopotowski Ł., Kupka Teobald, Srobiński L.
  • 125. Kenawy E.R., Bowlin G.L., Mansfield K., Layman J., Simpson D.G., Sanders E.H., Wnek G.E., 2002, Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate). poly(lactis acid) and a blend, Journal of Control Release, 81, s. 57-64.
  • 126. Kiang, C.H., Goddard, W.A. III, Beyers, R., Salem, J.R., Bethune, D.S., 1994, Catalytic synthesis of single-layer carbon nanotubes with a wide range of diameters, Journal of Physical Chemistry, Volume 98, s. 6612-6618.
  • 127. Kiang C.H., Goddard W.A. III, Beyers R., Salem J.R., Bethune D.S, 1996, Catalytic effects of heavy metals on the growth of single-layer carbon nanotubes and nanoparticles, Journal of Physical Chemistry, Vol. 57, s. 35-39.
  • 128. Kijeńska E., Ciach T., Świeszkowski W., Tomaszewski W., Konttinen Y., Hutmacher D.W., Kurzydłowski K.J., 2008, The Interaction between nanofibers meshes covered scaffolds and chondrocytes. Tissue Engineering Part A, 14, s. 917-927.
  • 129. Klingeler R., Hampel S., Buechner B., 2008, Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery, International Journal of Hyperthermia., 24, s. 496-505.
  • 130. Klumpp C., Kostarelos K., Prato M., Bianco A., 2006, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochimica et Biophysica Acta, 1758, s. 404-412.
  • 131. Kołaciński Z., 1983a, Wybrane zagadnienia termodynamiki łuku krótkiego. Arch. Term. 4 (1983) s. 383-397.
  • 132. Kołaciński Z., 1983b, Zjawiska cieplne determinujące ponowny zapłon łuku krótkiego w łącznikach niskiego napięcia, Zeszyty Naukowe PŁ, Łódź, zeszyt 56.
  • 133. Kołaciński Z., 1986, Plasma contamination with electrode material vapor jets, Plasma Chemistry and Plasma Processing, Vol. 6, No. 3, 299-310.
  • 134. Kołaciński Z. (ed.), 1989, Thermodynamics of short-arc plasma, PWN Warszawa.
  • 135. Kołacinski Z., 2001a, Magnetically Driven Arc in PTFE Slot, XXV International Conference on “Plasma in Ionized Gases” – Nagoya, Japan, 17-22 July 2001, Volume 3, s. 291-292,
  • 136. Kołacinski Z., Mitura S., Szymanski Ł., Kaczorowski W., 2008a, Arc Discharge Parameters Affecting Carbon Nanotubes Growth in the Catalyst Free Environment, 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes and Nitrides, Sitges, Hiszpania.
  • 137. Kołaciński Z., Mitura S., Szymanski Ł., Kaczorowski W. Raniszewski G., 2008b: Conditions Affecting Carbon Nanotubes Growth in the Arc Discharge, 1st International Conference from Nanoparticles & Nanomaterials to Nanodevices & Nanosystems, Halkidiki, Grecja.
  • 138. Kołacinski Z., Mitura S., Szymański Ł., Kaczorowski W., Raniszewski G., 2008c: Effective Growth of Carbon Nanotubes in the Arc Discharge, II Krajowa Konferencja Nanotechnologii, Kraków.
  • 139. Kołaciński Z., Szymański Ł., Raniszewski G., 2009a, Anode plasma jet behavior in CNTs deposit growth, 17th International Collegium on Plasma Processes, Marseille, Francja, 22-26.06.2009, s. 222.
  • 140. Kołaciński Z., Szymański Ł., Raniszewski G., Druri M., 2009b, Hybrid vertical flow reactor for continuous CNTs synthesis, Diamond 2009, 20th European Conference on Diamond, Diamond-Like Materials, Carbon nanotubes, and Nitrides, 6-10 September 2009, Athens, Greece, s. P1.8.11.
  • 141. Kołaciński Z., Szymański Ł., Raniszewski G., Druri M., 2009c, Un-flow continuous CNTs deposition, 2nd International Conference from Nanoparticles and Nanomaterials to Nanodevices & Nanosystems, Rhodes, Grecja, s. 91.
  • 142. Kołaciński Z., Szymański Ł., Raniszewski G., Wiak S., 2011, Plazmowa synteza nanorurkowych podłoży węglowych dla układów elektronicznych, Elektronika – konstrukcje – technologie – zastosowania, 10/2011, s. 122-124.
  • 143. Kołaciński Z., Szymański Ł., Raniszewski G., Wiak S., 2012a, Plasma synthesis of carbon nanotubes for electrical and electronic engineering, Przegląd Elektrotechniczny (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012, s. 149-152.
  • 144. Kołaciński Z., Tracz A.H., Szymański Ł., Druri M., Raniszewski G., Pietrzak Ł., 2012b, Badanie wpływu zewnętrznego pola magnetycznego na właściwości plazmy łukowej warunkujące efektywną syntezę nanorurek węglowych, projekt badawczy N N510 390138.
  • 145. Kołacinski Z., Szymański Ł., Raniszewski G., 2013, LTE plasma reactors for materials conversion, The European Physical Journal Applied Physics. Volume 61, Issue 02, 24314 (7 stron).
  • 146. Kostarelos K., Bianco A., Prato M., 2009, Promises, facts and challenges for carbon nanotubes in imaging and therapeutics, Nature Nanotechnology, 4, s. 627-633.
  • 147. Kostarelos K., Lacerda L., Pastorin G., 2007, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nature Nanotechnology, 2, s. 108-113.
  • 148. Kozhuharova R., Ritschel M., Mönch I., Mühl T., Leonhardt A., 2005, Selective Growth of Aligned Co-Filled Carbon Nanotubes on Silicon Substrates, Fullerenes, nanotubes and Carbon nanostructures,13, s. 347-353.
  • 149. Krätschmer W., Lamb L.D., Fostiropoulos F., Huffman D.R., 1990, Solid C60: a new form of carbon, Nature 347, s. 354-358.
  • 150. Królikowski C., Żmudziński W., 2008, Analiza przepływu energii promieniowania na parametry przepływu plazmy argonowej w palniku plazmowym, Scripta Comeniana Lesnensia, nr 6, 2008, Leszno, s. 179-196.
  • 151. Kundrapu M., Li J., Shashurin A., Keidar M., 2012, A model of carbon nanotube synthesis in arc discharge plasmas, Journal of Physics D: Applied Physics, Volume 45, Number 31, 315305.
  • 152. Kuwana K., Saito K., 2005, Modeling CVD synthesis of carbon nanotubes: Nanoparticle formation from ferrocene, Carbon, 43, 2088-2095.
  • 153. Lacerda L., Bianco A., Prato M., Kostarelos K., 2006, Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Journal of Controlled Release, 58, s. 1460-1470.
  • 154. Lambert J.M., Ayajan P.M., Bernier P., 1995, Synthesis of single and multi-shell carbon nanotubes, Synthetic Metals, Volume 70, Issues 1-3, s. 1475-1476.
  • 155. Lange H., Huczko A., Sioda M., Pacheco M., Razafinimanana M., Gleizes, 2002, Influence of gadolinium on carbon arc plasma and formation of fullerenes and nanotubes, Plasma Chemistry and Plasma Processing, Vol. 22, Issue 4, s. 523-536.
  • 156. Lange H., Sioda M., Huczko A., Zhu Y.Q., Kroto H.W., Waltonb, D.R.M., 2003, Nanocarbon production by arc discharge in water, Carbon 41, s. 1617-1623.
  • 157. Laplaze D., Bernier P., Maser W.K., Flamant G., Guillard T., Loiseau, A., 1998, Carbon nanotubes : The solar approach, Carbon 36, s. 685-688.
  • 158. Lee C.J., Lyu S.C., Cho Y.R., Lee J.H., Cho K.I., 2001, Diameter-controlled growth of carbon nanotubes using the chemical vapor deposition, Chemical Physics Letters, Volume 341, Issues 3-4, s. 245-249.
  • 159. Lee S.C., Hwang B.W., Lee S.J., Choi H.Y., Kim S.Y., Jung S.Y., Ragupathy D., Lee D.D., Kim J.C., 2011, A novel tin oxide-based recoverable thick film SO2 gas sensor promoted with magnesium and vanadium oxides, Sensors & Actuators: B. Chemical, Volume 160, Issue 1, s. 1328-1334.
  • 160. Lee S.J., Baik H.K., Yoo J., Han J.H., 2002, Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique, Diamond and Related Materials 11, s. 914-917.
  • 161. Leonhardt A., Hampel S., Müller C., Mönch I., Koseva R., Ritschel M., Elefant D., Biedermann K., Büchner B., 2006, Synthesis, Properties, and Applications of Ferromagnetic-Filled Carbon Nanotubes. Chemical Vapor Deposition, 12, s. 380-387.
  • 162. Leonhardt A., Mönch I., Meye A., Hampel S. Büchner B., 2006, Synthesis of ferromagnetic filled carbon nanotubes and their biomedical application. Advances in Science and Technology, 49, s. 74-78.
  • 163. Leonhardt A., Ritschel M, Kozhuharova R., Graff A., Mühl T., Huhle R., Mönch I., Elefant D., Schneider C.M., 2003, Synthesis and properties of filled carbon nanotubes. Diamond and Related Materials, 12, s. 790-793.
  • 164. Levchenko I., Ostrikov K., Keidar M., Xu S., 2006, Deterministic nanoassembly: Neutral or plasma route?, Applied Physics Letters, Volume 89, Issue 3, Applied Physics Letters. 89, 033109, (3 strony)
  • 165. Li Y., Zhang X., Luo J., Huang W., Cheng J., Luo Z., Li T., Liu F., Xu G., Ke X., Li L., Geise H.J., 2004, Purification of CVD synthesized single-wall carbon nanotubes by different acid oxidation treatments. Nanotechnology, Volume 15, Issue 11, s. 1645-1649.
  • 166. Li Y.L., Yu Y.D., Liang Y., 1997, A novel method for synthesis of carbon nanotubes: Low temperature solid pyrolysis, Journal of Materials Research, Volume 12, Issue 07, s. 1678-1680.
  • 167. Li Z., Wei L., Zhang Y., 2008, Effect of heat-pretreatment of the graphite rod on the quality of SWCNTs by arc discharge, Applied Surface Science 254, s. 5247-5251.
  • 168. Li Z., Liu P., Zhao B., Wang H., Zhang Y., 2008, Improving the synthesis of single-walled carbon nanotubes by pulsed arc discharge in air by preheating the catalysts, Carbon 46, s. 1792-1828.
  • 169. Liang Q., Yao X., Wang W., Liu Y., Wong C., A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials, ACS Nano 5 (3), 2011, s. 2392-2401.
  • 170. Lin X., Wang X.K., Dravid V.P., Chang R.P.H., Ketterson J.B., 1994, Large scale synthesis of single-shell carbon nanotubes, Applied Physics Letter, Volume 64, Issue 2, 111525.
  • 171. Liu M., Yin X., Ulin-Avila E., Geng B., Zentgraf T., Ju, L., Wang, F., Zhang, X., A grapheme-based broadband optical modulator, Nature 474, 2011, s. 64-67.
  • 172. Liu Y., Xiaolong S., Tingkai Z., Jiewu Z., Hirscher M., Philipp F., 2004, Amorphous carbon nanotubes produced by a temperature controlled DC arc discharge, Carbon 42, s. 1852-1855.
  • 173. Liz-Marzan L.M. (ed.), Kamat P.V. (ed.), 2003, Nanoscale Materials, Kluwer Academic Publishers, Springer US.
  • 174. Loiseau A., pascard, H., 1996, Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method, Chemical Physics Letters, Volume 256, Issue 3, s. 246-252.
  • 175. Lv X., Du F., Ma Y., Wu Q., Chen Y., 2005, Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds, Carbon, Volume 43, Issue 9, s. 2020-2022.
  • 176. Ma X., Cai Y., Li X., Wen S., 2003, Growth and microstructure of Co-filled carbon nanotubes, Journal of Materials Science and Engineering, A 357, s. 308-313.
  • 177. Marusik M., 1982, Dynamika wyładowania elementarnego łuku krótkiego. Praca doktorska, Politechnika Łódzka.
  • 178. Matsuura T., Taniguchi K., Watanabe T, 2006, A new type of arc plasma reactor with 12-phase alternating current discharge for synthesis of carbon nanotubes, Thin Solid Films 515, s. 4240-4246.
  • 179. Matyba P., Yamaguchi H., Eda G., Chhowalla M., Edman L., Robinson N.D., 2010, Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices, ACS Nano, , 4 (2), s. 637-642.
  • 180. McElvany S.W., Nelson H.H., Baronowski A.P., Watson C.H., Eyler J.R., 1987, Chemical Physics Letters, 134, s. 214.
  • 181. Méténier K., Bonnamy S., Béguin F., Journet C, Bernier P., de la Chapelle L.M., Chauvet O., Lefrant S., 2002, Coalescence of single walled nanotubes and formation of multi-walled carbon nanotubes under high temperature treatments, Carbon 40, s. 1765-1773.
  • 182. Meyyappan M. (ed.), 2005. Carbon Nanotubes: Science and Applications. Boca Raton,
  • 183. Florida, USA, CRC Press LLC. Michalski A.J., 2000, Fizykochemiczne podstawy otrzymywania powłok z fazy gazowej,
  • 184. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • 185. Mishra A.K., Ramaprabhu S., 2011, Functionalized grapheme sheets for arsenic removal and desalination of sea water, Desalination 282, s. 39-45.
  • 186. Mitra P., Chatterjee A.P., Maiti H.S., ZnO thin film sensor, Materials Letters, Volume 35, Issues 1-2, s. 33-38.
  • 187. Mitura S., Mitura K., Niedzielski P., Louda P., Danilenko V., 2006, Nancrystalline diamond, its synthesis, properties and applications, Volume 16, Issue 1-2, s. 9-16.
  • 188. Mohanty N., Berry V., 2008, Graphene-based Single-Bacterium Resolution Biodevice and DNA-Transistor - Interfacing Graphene-Derivatives with Nano and Micro Scale Biocomponents, Nano Letters, Volume 8, Issue 12, s. 4469-4476.
  • 189. Mönch I., Meye A., Leonhardt A., Krämer K., Kozhuharova R., Gemming T., Wirth M., Büchner B., 2005, Ferromagnetic filled carbon nanotubes and nanoparticles: synthesis and lipid-mediated delivery into human tumor cells. Journal of Magnetism and Magnetic Materials, 290/291, s. 276-278.
  • 190. Monthioux M., Pacheco M., Allouche H., Razafinimanana, M., Caprais N., Donadieu L., Gleizes A., 2002, New Data on the Formation of SWNTs by the Electrical Arc Method, AIP Conference Proceedings, Volume 633 Issue 1, s. 182-194.
  • 191. Müller C, Golberg D., Leonhardt A., Hampel S., Büchner B., 2006, Growth studies, TEM and XRD investigations of iron-filled carbon nanotubes. Physica Status Solidi A, 203, s. 1064-1068.
  • 192. Murphy R., Coleman J.N., Cadek M., McCarthy B., Bent M., Drury A., Barklie R.C., Blau W.J., 2002, High-yield, nondestructive purification and quantification method for multiwalled carbon nanotubes, Journal of Physical Chemistry B, 106 (12), s. 3087-3091.
  • 193. Musil J., 2000, Hard and superhard nanocomposite coatings, Surface and Coatings Technology, Volume 125, Issues 1-3, s. 322-330.
  • 194. Nair R.R., Wu H.A., Jayaram P.N., Grigorieva I.V, Geim A.K., 2012, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 27, Volume 335, Number 6067, s. 442-444.
  • 195. Nakajima A., Hashimoto K., Watanabe T., 2001, Recent studies on super-hydrophobic films, Chemical Monthly, Volume 132, Issue 1, s. 31-41.
  • 196. Nestor O.H., Olsen H.N., 1960, Numerical methods for reducing line and surface probe data, Society for Industrial and Applied Mathematics Review Review, Volume 2, Issue 3, s. 200-207.
  • 197. Nikolaev P., Bronikowski M.J., Bradley R.K., Rohmund F., Colbert D.T., Smith K.A., Smalley R.E., 1999, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, Volume 313, Issues 1-2, s. 91-97.
  • 198. Nitter T., 1996, Levitation of dust in rf and dc glow discharges, Plasma Sources Science and Technology, Volume 5, Number 1, s. 93-111.
  • 199. Okada T., Kaneko T., Hatakeyama R., 2007, Conversion of toluene into carbon nanotubes using arc discharge plasmas in solution, Thin Solid Films 515, s. 4262-4265.
  • 200. Ong M., Reed E.J., 2012, Engineered piezoelectricity in grapheme, ACS Nano 6 (2), s. 1387-1394.
  • 201. Park T.J., Banerjee S., Hemaraj-Benny T., Wong, S.S., 2006, Purification strategies and purity visualization techniques for singlewalled carbon nanotubes, Journal of Materials Chemistry, 16 (2), s. 141-154.
  • 202. Park Y.S., Choi Y.C., Kim K.S., Chung D.C., Bae D.J., An K.H., Lim S.C., Zhu X.Y., Lee Y.H., 2001, High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing, Carbon, 39(5), s. 655-661.
  • 203. Parkansky N., Boxman R.L., Alterkop B., Zontag I., Lereah Y., Barkay Z., 2004, Single pulse arc production of carbon nanotubes in ambient air, Journal of Physics D: Applied Physics 37, s. 2715-2719.
  • 204. Patel V., 2013, Global carbon nanotubes market – industry beckons, http://www.nanowerk.com/spotlight/spotid=23118.php [dostęp: 6 maja 2013].
  • 205. Pflanz H.M.J., 1967, Steady state and transient properties of electric arcs, Technische Hogeschool Eindhoven, Holandia.
  • 206. Pierson H.O., 1993, Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications, Noyes Publications, Park Rigge, New Jersey, USA.
  • 207. Portney N.G., Ozkan M., 2006, Nano-oncology: drug delivery, imaging, and sensing. Analytical and Bioanalytical Chemistry, 384, s. 620-630.
  • 208. Price R.L., Waid M.W., Haberstroh K.M., Webster T.J., 2003: Selective bone cell adhesion on formulations containing carbon nanofibers, Biomaterials, 24, s. 1877-1887.
  • 209. Przygocki W., Włochowicz A., 2001, Fulereny i nanorurki. Własności i zastosowanie, Wydawnictwa Naukowo-Techniczne, Warszawa.
  • 210. Ramakrishna S., Fujihara K., Teo W.E., Lim T.C., Ma Z., 2005, An introduction to electrospinning and nanofibers, wyd. 1, World Scientific, Singapore.
  • 211. Raniszewski G., 2009, Wpływ gazowych składników mineralnych na właściwości wyładowania łukowego prądu stałego, praca doktorska. Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki.
  • 212. Raniszewski G., 2012a, Carbon Nanotubes Synthesis by Electric Arc Plasma with External Magnetic Field, Conference Proceedings 4th International Conference Nanocon, Thomson Reuters database for indexing in Conference Proceedings Citation Index Web of Science/Web of Knowledge, s. 131-137.
  • 213. Raniszewski G., 2012b, Carbon nanotubes and electrical devices for cancer treatment and therapy, mat. International Conference on Nanotechnology in Medicine, 7-9 November 2012, University College London UK.
  • 214. Raniszewski G., 2012c, Plasma arc for carbon nanotubes synthesis dedicated for medical applications, HAKONE XIII, Lublin.
  • 215. Raniszewski G, 2012d, Diagnostics of Electric Arc for Carbon nanotubes Synthesis for Medical Applications, Conference Proceedings 4th International Conference Nanocon Thomson Reuters database for indexing in Conference Proceedings Citation Index Web of Science/Web of Knowledge, 137-142.
  • 216. Raniszewski G., 2013, Temperature measurements in arc-discharge synthesis of nanomaterials dedicated for medical applications, The European Physical Journal Applied Physics, Volume 61, Issue 02, 24311 (6 stron).
  • 217. Raniszewski G., Czarnecka J., Henisz T., Wilczak M., 2012d, Carbon nanotubes as a material of the future – the optimization of the synthesis, materiały niepublikowane Project Based Workshop, supervisor: G. Raniszewski.
  • 218. Raniszewski G., Kołaciński, Z., Szymański, Ł., 2006, Copper as a detecting element in mineral arc temperature measurements, Czechoslovak Journal of Physics, Volume 56, suppl. 2, s. B1326-B1332.
  • 219. Raniszewski G., Kołaciński Z., Szymański Ł., 2008, Influence of waste composition on electric arc electron density, Chemicke Listy 102, 1436-1440.
  • 220. Raniszewski G., Kolaciński Z., 2009, Temperature of Electric Arc in Argon-Metal Vapor Atmosphere, w: Recent Advances in Numerical Modelling, s.35-39, Warszawa-Lublin, Electrotechnical Institute Publishing House.
  • 221. Raniszewski G., Kolaciński Z., Szymański Ł., 2012, Influence of Contaminants on Arc Properties during Treatment of Polluted Soils in Electric Arc Plasma, Journal of Advanced Oxidation Technologies, Volume 15, Number 1, s. 34-40.
  • 222. Raniszewski, G., Szymański Ł., Kołaciński Z., 2012, Ferromagnetic Carbon nanotubes for Cancer Treatment, mat. International Conference on Nanotechnology in Medicine, 7-9 November 2012, University College London, UK.
  • 223. Raniszewski G., Kołaciński Z., Wiak S., Szymański Ł., Druri M., 2013, Właściwości łuku elektrycznego determinujące proces syntezy nanorurek węglowych, projekt badawczy własny nr N N510 535539. Kierownika projektu: G. Raniszewski.
  • 224. Rao C.N.R., Sen R., Satishkumar B.C., Govindaraj A., 1998, Large aligned-nanotube bundles fromferrocene pyrolysis. Chemical Communication, 15, s. 1525-1526.
  • 225. Rinzler A.G., Liu J., Dai H., Nikolaev P., Huffman C.B., Rodrıguez-Macıas F., Boul P.J., Lu A.H., Heymann D., Colbert D.T., Lee R.S., Fisher J.E., Rao A.M., Eklund P.C., Smalley R.E., 1998, Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Applied Physics A, 67 (1), s. 29-37.
  • 226. Ryan K., 2005, Polymer crystallization as a reinforcement mechanism for polymer-carbon nanotube composites, praca doktorska, University of Dublin, Irlandia.
  • 227. Saito Y., Nishikubo K., Kawabata T., Matsumoto T., 1993, Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge, Journal of Applied Physics, Volume 80, Issue 5, s. 3062-3068.
  • 228. Saito Y., Yoshikawa T., Okuda M., Fujimoto N., 1994, Cobalt particles wrapped in graphitic carbon prepared by an arc discharge method, Journal of Applied Physics, Volume 75, Issue 1. s. 134-137.
  • 229. Saito Y., Tani Y., Miyagawa N., Mitsushima K., Kasuya A., Nishina Y., 1998, High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts, Chemical Physics Letters, Volume 294, Issue 6, s. 593-598.
  • 230. Saito R., Dresselhaus G., Dresselhaus M.S., 1998, Physical Properties of Carbon Nanotubes, Imperial College Press, London UK.
  • 231. Saito R., Fujita M., Dresselhaus G., Dresselhaus M.S., 1992, Electronic structure of chiral grapheme tubules, Applied Physics Letters, Volume 60, Issue 18, s. 2204-2206.
  • 232. Sanchez-Pomales G., Santiago-Rodriguez L., Rivera-Velez N.E., Cabrera, C.R., 2007, Characterization of the DNA-assisted purification of single-walled carbon nanotubes. Phys Status Solidi A, 204 (6), s. 1791-1796.
  • 233. Sano N., Naito M., Chhowalla M., Kikuchi T., Matsuda S., Iimura K., Wang H., Kanki T., Amaratunga G.A.J., 2003, Pressure effects on nanotubes formation using the submerged arc in water method, Chemical Physics Letters 378, s. 29-34.
  • 234. Schur D.V., Dubovoy A.G., Zaginaichenko S.Y., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., 2007, Production of carbon nanostructures by arc synthesis in the liquid phase, Carbon 45, s. 1322-1329.
  • 235. Scuderi V., Bongiorno C., Faraci G., Scalese S., 2012, Effect of the liquid environment on the formation of carbon nanotubes and graphene layers by arcing processes, Carbon 50, s. 2347-2374.
  • 236. Sen R., Govindaraj A, Rao C.N.R., 1997, Carbon nanotubes by the metallocene route. Chemical Physics Letters, 267, s. 276-280.
  • 237. Sen R., Rickard S.M., Itkis M.E., Haddon R.C., 2003, Controlled purification of single-walled carbon nanotube films by use of selective oxidation and near-IR spectroscopy. Chemistry of Materials, 15 (22), s. 4273-4279.
  • 238. Seraphin S., Zhou D., 1994, Single-walled carbon nanotubes produced at high yield by mixed catalysts, Applied Physics Letters, Volume 64, Issue 16, 1994, s. 2087.
  • 239. Sharakhovskii L.I., Bublievskii A.F., Gorbunov A.V., Zhdanok S.A., Dolgolenko G.V., Ermolaeva E.M., Skomorokhov D.S., Nikonchuk A.N., 2008, Production of carbon nanotubes from an air propane butane mixture in a high voltage atmospheric pressure discharge with an external magnetic field, Journal of Engineering Physics and Thermophysics, Vol. 81, No. 4.
  • 240. Shashurin A., Keidar M., 2008, Factors affecting the size and deposition rate of the cathode deposit in an anodic arc used to produce carbon nanotubes, Carbon 46, Issue 13, s. 1826-1828.
  • 241. Shashurin A., Keidar M., Beilis I.I., 2008, Voltage-current characteristics of an anodic arc producing carbon nanotubes, Journal of Applied Physics 104, 063311 (5 stron).
  • 242. Shelimov K.B., Esenaliev R.O., Rinzler A.G., Huffman C.B., Smalley R.E., 1998, Purification of single-wall carbon nanotubes by ultrasonically assisted filtration, Chemical Physics Letters, 282 (5-6), s. 429-434.
  • 243. Shenggao W., Jianhua W., Zhibin M, Chuanxin W., Weidong M., 2005, Growth of Aligned Carbon Nanotubes through Microwave Plasma Chemical Vapor Deposition, Plasma Science and Technology, Volume 7, Number 1, s. 2681.
  • 244. Sigma-Aldrich, 2013, Materials science products – carbon nanotubes, http://www.sigmaaldrich.com [dostęp: 12 maja 2013].
  • 245. Sinaiski E.G., Zaichik L.I., 2008, Statistical Microhydrodynamics, Willey-VCH Verlag-GmBH & Co. KGaA, Weinheim, Germany.
  • 246. Sioda M., 2005, Synteza fulerenów i nanostruktur węglowych w plazmie lukowej, praca doktorska, Uniwersytet Warszawski, Wydział Chemii.
  • 247. Sioda M., Lange H., Ming E.S., 2005, Role of diamond on carbon nanostructure formation in the arc discharge, Acta Physica Slovaca, col. 55, No. 4, s. 405-409.
  • 248. Smalley R.E., 1996, Discovering fullerenes, Nobel Lecture, s. 89-102.
  • 249. Sohn J.I., Choi C.J., Lee S., Seong T.Y., 2001, Growth behavior of carbon nanotubes on Fe-deposited (001) Si substrates, Applied Physics Letters, Volume 78, Issue 20, s. 3130-3132.
  • 250. Son S.J., Bai X., Nan A., Ghandehari H., Lee S.B., 2006, Template synthesis of multifunctional nanotubes for controlled release. Journal of Controlled release., 114, s. 143-152.
  • 251. Stoller M.D., Park S., Zhu Y., An J., Ruoff R.S., 2008, Graphene based ultracapacitors, Nano Letters 8 (10), s. 3498-3502.
  • 252. Subramoney S., Ruoff R.S., Lorents D.C., Malhorta R., 1993, Radial single-layer nanotubes, Nature 366, s. 637.
  • 253. Sugai T., Omote H., Bandow S., Tanaka N., Shinohara H., 2000, Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge. Journal of Chemical Physics 112 (13), 6000-6005.
  • 254. Sun Q., Fu Z.W., 2008, Vanadium nitride asa novel thin film anode material for rechargeable lithium batteries, Electrochimica Acta, Volume 54, Issue 2, s. 403-409.
  • 255. Suzuki T., Suhama K., Zhao X.L., Inoue S., Nishikawa N., Ando Y., 2007, Purification of single-wall carbon nanotubes produced by arc plasma jet method. Diamond and Related Materials, 16, (4-7), s. 1116-1120.
  • 256. Szopa M., Marganska M., Zipper E., Lisowski, M., 2004, Coherence of persistent currents in multiwall carbon nanotubes, Physical Review B 70, 075406.
  • 257. Szymański Ł., Kołaciński Z., Raniszewski G., 2012a, Reaktor plazmowy z łukiem wirującym, Przegląd Elektrotechniczny, R. 88 NR 6/2012 s. 118-122.
  • 258. Szymański Ł., Raniszewski G., Kołaciński Z., 2012a, Microwave Plasma for CNTs Synthesis with Iron Pentacarbonyl as a Precursor, Conference Proceedings 4th International Conference Nanocon, Brno, pp. 376-382.
  • 259. Szymański Ł., Raniszewski G., Kołaciński Z., 2012b, Magnetic Field Controlled Cnts Synthesis In An Electrical Arc, Book of Contributed Papers – Hakone XIII, s. 268-270.
  • 260. Takikawa H., Yatsuki M., Sakakibara T., Itoh S., 2000, Carbon nanotubes in cathodic vacuum arc discharge, Journal of Physics D, Volume 33, Number 7, s. 826-830.
  • 261. Tang D., Sun L., Zhou J., Zhou W., Xie S., 2005, Two possible emission mechanisms involved in the arc discharge method of carbon nanotube preparation, Carbon 43, Issue 13, s. 2812-2816.
  • 262. Tasis D., Tagmatarchis N., Bianco A., Prato M., 2006, Chemistry of carbon nanotubes, Chemicla Review, 106, s. 1105-1136.
  • 263. Taylor A., Krupskaya Y., Krämer K., Füssel S., Klingeler R., Büchner B., Wirth M.P., 2010, Cisplatin-loaded carbon-encapsulated iron nanoparticles and their in vitro effects in magnetic fluid hyperthermia, Carbon 2010, 48, 2327-2334.
  • 264. Ted Pella, Inc., 2012, Material safety data sheet. Carbon and graphite products., Review Date 06-01-12.
  • 265. Tee J.C., Buang N.A., Sanip S.M., Ismail A.F., Buang N.A., 2007, Synthesis of multi-walled carbon nanotubes (MWNTS) over anodic aluminium oxide (AAO( template), Journal of Sustainably Science and Management , Volume 2, Number 1, s. 36-39.
  • 266. Tendeloo van G., Bernaerts D., Amelinckx S., 1998, Reduced dimensionality in different forms of carbon, Carbon, Volume 36, Number 5, s. 487-493.
  • 267. Terrones M, 2003, Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes, Annual Review of Materials Research 33, s. 419-501.
  • 268. Tersoff J., Ruoff R.S., 1994, Structural properties of a carbon-nanotube crystal, Physical Review Letters, Volume 73, s. 676-679.
  • 269. Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y.H., Kim G.S, Rinzler A.G., Colbert D.T., Scuseria G., Tomanek D., Fischer J.E, Smalley R.E., 1996, Crystalline Ropes of Metallic Carbon Nanotubes, Science, 273, s. 483-487.
  • 270. Thostenson E.T., Ren Z., Chou T.W., 2001, Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 61, s. 1899-1912.
  • 271. Tian Y., Zhang Y., Wang B., Ji W., Zhang Y., Xie K., 2004, Coal-derived carbon nanotubes by thermal plasma jet, Carbon 42, s. 2597-2601.
  • 272. Tobias G., Shao L.D., Salzmann C.G., Huh Y., Green M.L.H., 2006, Purification and opening of carbon nanotubes using steam. Journal of Physical Chemistry B, 110, (45), s. 22318-22322.
  • 273. Tran P.A., Zhang L., Webster T.J., 2009, Carbon nanofibers and carbon nanotubes in regenerative medicine. Advanced Drug Delivery Reviews, 61, s. 1097-1114.
  • 274. Tsai Y.Y., Sua J.S., Suc C.Y., Hec W.H., 2009, Journal of Materials Processing Technology, s. 4413-4416.
  • 275. Tsang S.C., Chen Y.K., Harris P.J.F., Green M.L.H., 1994, A simple chemical method of opening and filling carbon nanotubes. Nature, 372, s. 159-162.
  • 276. Verreck G., Chun I., Rosenblatt J., Peeters J., van Dijck A., Mensch J., Noppe M., Brewster M.E., 2003, Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a waste-sinsoluble, nonbiodegradable polymer, Journal of Controlled Release, 92, s. 1851-1859.
  • 277. Waldorf E.I., Wass A.M., Friedmann P.P., Keidar M., 2004, Characterization of carbon nanotubes produced by arc discharge: Effect of the background pressure, Journal of Applied Physics 95, 2749 (6 stron).
  • 278. Walkowicz J., 2003, Fizykochemiczna struktura plazmy a skład chemiczny i fazowy warstw wytwarzancyh technikami plazmowej inżynierii powierzchni, Wydawnictwo i Zakład Poligrafii Instytutu Technologii Eksploatacji, Radom.
  • 279. Wang S.-D., Chang M.-H., Lan K.M.D., Wu C.C., Cheng J.J., Chang H.K., 2005, Synthesis of carbon nanotubes by arc discharge in sodium chloride solution, Carbon 43, s. 1778-1814.
  • 280. Wang H., Nezich D., Kong K., Palacios T., 2009, Graphene frequency multipliers. IEEE Electron Device Letters, Volume 30, Number 5, 2009, s. 547-549.
  • 281. Wang W., Wang K., Lv R., Wei J., Zhang X., Kang F., Chang J., Shu Q., Wang Y., Wu D., 2007, Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor, Carbon, 45, s. 1127-1129.
  • 282. Wang X., Zhi L., Müllen K., 2008, Transparent, conductive grapheme electrodes for dye-sensitized solar cells, Nano Letters, Volume 8 (1), s. 232-327.
  • 283. Wang Y., Chen X., Zhong Y., Zhu F., Loh K.P., 2009, Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices, Applied Physics Letters 95 (Issue 6), id. 063302.
  • 284. Wang Y.H., Shan H.W., Hauge R.H., Pasquali M., Smalley R.E., 2007, A highly selective, one-pot purification method for singlewalled carbon nanotubes, Journal of Physical Chemistry B, 111, (6), s. 1249-1252.
  • 285. Wang Z., Dou B., Zheng L., Zhang G., Liu Z., Hao Z., 2012, Effective desalination by capacitive deionization with functional grapheme nanocomposite as novel electrode material, Desalination, Volume 299, s. 96-102.
  • 286. Web of Knowledge, 2013, www.webofknowledge.com/ [dostęp: 6 maja 2013].
  • 287. Wei L., Wang B., Goh T.H., Li L.J., Yang Y.H., Chan-Park M.B., Chen Y., 2008, Selective enrichment of (6, 5) and (8, 3) single-walled carbon nanotubes via cosurfactant extraction from narrow (n, m) distribution samples, Journal of Physical Chemistry B, 112(10), s. 2771-2774.
  • 288. Wei Y., Eres G., Merkulov V.I., Lowndes D.H., 2001, Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Applied Physics Letters, Volume 78, Issue 10, 1394-1396.
  • 289. Weiss F.D., Elkind J.L., O’Brien S.C., Curl R.F., Smalley R.E., 1988, Photophysics of metal complexes of spheroidal carbon shells, Journal of American Chemical Society, 110 (13), s. 4464-4465.
  • 290. Wikimedia Commons 2013, http://commons.wikimedia.org/wiki/ [data dostępu: maj 2013].
  • 291. Wiltshire J.G., Khlobystov A.N., Li L.J., Lyapin S.G., Briggs G.A.D., Nicholas R.J., 2004, Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes. Chem Phys Lett, 386, (4-6), s. 239-243.
  • 292. Winkler A., Mühl T., Menzel S., Kozhuharova-Koseva R., Hampel S., Leonhardt A., Büchner B., 2006, Magnetic force microscopy sensors using iron-filled carbon nanotubes, Journal of Applied Physics 99, s. 104905-104909.
  • 293. Wolny F., Weissker U., Mühl T., Leonhardt A., Menzel S., Winkler A., Büchner, B., 2008, Iron-filled carbon nanotubes as probes for magnetic force microscopy, Journal of Applied Physics 104, s. 064908-064912.
  • 294. Wu J., Agrawal M., Becerril H., Bao Z., Liu Z., Chen Y., Peumans P., 2010, Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes, ACS Nano 4(1), s. 43-48.
  • 295. Xu Y.Q., Peng H.Q., Hauge R.H., Smalley, R.E., 2005, Controlled multistep purification of single-walled carbon nanotubes, Nano Letters, 5 (1), s. 163-168.
  • 296. Yamamotoa N., Hart A.J., Garciaa E.J., Wicksa S.S., Duonga H.M., Slocumb A.H., Wardlea B.L., 2009, High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites, Carbon 47, s. 551-560.
  • 297. Yang F., Murugan R., Wang S., Ramakrishna S., 2005, Electrospinning of nano/micro scale poly(L-lactis acid) aligned fibers and their potential in neural tissue engineering, Biomaterials, 26, s. 2603-2610.
  • 298. Yao M., Liu B., Zou Y., Wang L., Li D., Cui T., Zou G., Sundqvist B., 2005, Synthesis of single-wall carbon nanotubes and long nanotube ribbons with Ho/Ni as catalyst by arc discharge, Carbon 43, s. 2894-2901.
  • 299. Ye X.R., Chen L.H., Wang C., Aubuchon J.F., Chen I.C., Gapin A.I., Talbot J.B., Jin S., 2006, Electrochemical modification of vertically aligned carbon nanotube arrays. Journal of Physical Chemistry B 2006, 110 (26), s. 12938-12942.
  • 300. Yokota S., Kitaoka T., Wariishi H., Biofunctionality of self-assembled nanolayers composed of cellulosic polymers, Carbohydrate Polymers, Volume 78, Issue 3, s. 662-672.
  • 301. Yu A.P., Bekyarova E., Itkis M.E., Fakhrutdinov D., Webster R., Haddon R.C., 2006, Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. Journal of American Chemical Society, 128 (30), s. 9902-9908.
  • 302. Yu M.F., Lourine O., Dyer M.J, Moloni K., Kelly T.F., Ruoff R.S., 2000, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, Vol. 287, s. 637-640.
  • 303. Yudasaka M., Zhang M., Jabs C., Iijima S., 2000, Effect of an organic polymer in purification and cutting of single-wall carbon nanotubes. Applied Physics A, 71 (4), s. 449-451.
  • 304. Zeng J., Xu X., Chen X., Liang Q., Bian X., Yang L., Jing X., 2003, Biodegradable electrospun fibers for drug delivery, Journal of Controlled Release, 92, s. 227-231.
  • 305. Zhang S., Zhu W., 1993, TiN coating of tool steels: a review, Journal of Materials Processing Technology, 39, s. 165-177.
  • 306. Zhang H., Sun C.H., Li F., Li H.X., Cheng H.M., 2006, Purification of multiwalled carbon nanotubes by annealing and extraction based on the difference in van der Waals potential. Journal of Physical Chemistry B, 110 (19), s. 9477-9481.
  • 307. Zhang J., Zou H.L., Qing Q., Yang Y., Li Q., Liu Z., Guo X., Du Z., 2003, Effect of chemical oxidation on the structure of single-walled carbon nanotubes, Journal of Physical Chemistry B, 107 (16), s. 3712-3718.
  • 308. Zhang Q.L., O’Brien S.C., Heath J.R., Liu Y., Curl R.F., Kroto H.W., Smalley R.E., 1986, Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot, Journal of Physical Chemistry 90 (4), s. 525-528.
  • 309. Zhang X., Cao A., Wei B., Li Y., Wei J., Xu C., Wu D., 2002, Rapid growth of well-aligned carbon nanotube arrays. Chemical Physics Letters, 362, s. 285-290.
  • 310. Zhao T., Liu Y., 2004, Large scale and high purity synthesis of single-walled carbon nanotubes by arc discharge at controlled temperatures, Carbon 42, s. 2765-2768.
  • 311. Zhao T., Tang Q., Liu Y., Zhu C., Zhao X., 2007, Catalyst Composition and Content Effects on Synthesis of Single-Walled Carbon Nanotubes by Arc Discharge. Journal of Nanomaterials, Volume 2007, Article 84540 (4 strony).
  • 312. Zhao X.L., Ohkohchi M., Inoue S., Suzuki T., Kadoya T., Ando Y., 2006, Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge, Diamond and Related Materials, 15, (4-8), s. 1098-1102.
  • 313. Zhao C., Li L.Y., Guo M.M., Zheng J., 2012a, Functional polymer thin films designed for antifouling and biosensors, Chemical Papers, Volume 66, Issue 5, s. 323-339.
  • 314. Zhao J., Wei L., Yang Z., Zhang Y., 2012b, Continuous and low-cost synthesis of high-quality multi-walled carbon nanotubes by arc discharge in air, Physica E44, s. 1639-1643.
  • 315. Zheng M., Semke E.D., 2007, Enrichment of single chirality carbon nanotubes. Journal of American Chemical Society, 129 (19), s. 6084-6085.
  • 316. Zhu H.W., Li X.S., Jiang B., Xu C.L., Zhu Y.F., Wu D.H., Chen X.H., 2002, Formation of carbon nanotubes in water by the electric-arc technique, Chemical Physics Letters 366, s.664-669.
  • 317. Zhou D., Anoshkina E.V., Chow L., Chai G., 2006, Synthesis of carbon nanotubes by electrochemical deposition at room temperature, Carbon 44, s. 1013-1024.
  • 318. Zimmerman J.L., Bradley R.K., Huffman C.B., Hauge R.H., Margrave J.L., 2000, Gas-phase purification of single-wall carbon nanotubes, Chemistry of Materials, 12(5), s. 1361-1366.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b5e3674-a8bd-4b9e-beea-43fd5d3c3ff0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.