PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of operating pressure and stand-off distance on coal comminution by waterjet

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Comminution of coal to ultrafine sizes by high-pressure waterjet coupled with cavitation cell provides a novel method for preparation of coal-water fuels for next generation, near-zero emission electric power generation. To establish the fundamental performance of the waterjet mill, the effects of the operating pressure and stand-off distance were comprehensively investigated using a high ash bituminous coal. The comminution products were evaluated in terms of the particle size, particle size distribution, and surface area change. The experimental results indicated that the waterjet-mediated comminution of coal was strongly affected by all these operating parameters. Higher operating pressure led to finer products, while the efficiency of the waterjet mill in terms of particle size strongly depended on the stand-off distance. This research provides a deeper insight into the high-pressure waterjet for coal comminution and a basis for process parameter optimization.
Słowa kluczowe
Rocznik
Strony
394--401
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • School of Energy Science and Engineering Department, Xi’an University of Science and Technology, Xi’an, Shaanxi Province 710054, China
  • Ministry of Education’s Key Lab of Mining and Disaster Prevention and Control in Western Mine, Xi’an, Shaanxi Province 710054, China
autor
  • Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
autor
  • Department of Mining Engineering, Dokuz Eylul University, Izmir, 35370, Turkey
autor
  • Department of Mining Engineering, Dokuz Eylul University, Izmir, 35370, Turkey
Bibliografia
  • LASKOWSKI, JS., 2001. Coal flotation and fine coal utilization (first edition). Elsevier Science Publisher.
  • CATON J. A., 1992. The development of a coal-fuel diesel engines: A brief review. Energy Information Annual, 1993;17: A89–A97.
  • AUSTIN G. L., 1984. Gaudin lecture: Concepts in process design of mills. Mining Engineering; 36 (n:6.):628–35.
  • FUERSTENAU D. W., ABOUZEID, A. Z. M., The energy efficiency of ball milling in comminution. Int J Miner Process 2002; 67:161–85.
  • CUI L., AN L., GONG W., Effects of process parameters on the comminution capability of high pressure water jet mill. Int J Miner Process 2006;81:113–21.
  • ZULFIQUAR H. M., MOGHTADERI, B., WALL, FT., 2006. Technology assessment report 49 of Co-milling of coal and biomass in a pilot-scale vertical spindle mill. The University of Newcastle.
  • CUI L., AN, L, JIANG H., 2008. A novel process for preparation of ultra-clean superfine coal-oil slurry. Fuel;87:2296–303.
  • GALECKI G., AKAR G., SEN, S., LI Y., 2011. Enhanced cleaning of the coal feedstock for power generation. Proceedings of the Mining Engineering Conference on Innovations in Mining Engineering;Rolla, MO, USA: 30 August–1 September; 2011.
  • GALECKI G., MAZURKIEWICZ M., 1987. Effectiveness of coal comminution by high pressure waterjet, Proceedings of the 8th International Conference on Alternative Energy Sources 1987: Miami Beach, Florida, USA: December.
  • GALECKI G., AND MAZURKIEWICZ M., 1988. Direct injection of coal into cavitation cell for the purpose of comminution. In: 9th International Symposium on Jet Cutting Technology Sendai, Japan, 4–6 October.
  • HUANG KF., 1994. Selective crush by high speed liquid jet. Metallic Ore Dressing Abroad 2:1–6.
  • MAZURKIEWICZ M., 2001. Method of creating ultra-fine particles of materials using a high-pressure mill, United States Patent No.: 6318649;.
  • SUN Z., HOU F., 2002. Orthogonal analysis for factors of water power comminuting raw salt. Fluid Mach 30:47–50.
  • LIU Z., SUN Z, 2005. Wet comminution of raw salt using high-pressure fluid jet technology. Powder Techno. 160:194–7.
  • GONG W., FANG M., 1998. New development of jet mill technology and study on mechanism of comminution with high pressure water jet. Chemical Engineering Processing 6:30–33. (In Chinese)
  • HLAVAC M. L., HLAVACOVA I. M., JANDACKA P., ZEGZULKA J., VILIAMSOVA J., 2010. Material grinding by waterjets – Feasibility and limits. Journal of Scientific Conference Proceedings. 2:8–14.
  • FU S., DUAN X., ZHANG X. M., 2001. High-pressure water jet technology. Journal of Coal Science & Technology 29:1–4. (In Chinese)
  • HOU F., SUN Z., 2003. Research on Comminuting Raw Salt by High-pressure Water Jet Technology. China Powder Science and Technology. 6:19–22. (In Chinese)
  • YASHIMA S., KANDA Y., SANO S., 1987. Relationship between particle size and fracture energy as estimated for single particle crushing. Powder Technol. 51:277–82.
  • GALECKI G., AKAR G, SEN S, LI Y., 2012. Advanced studies on coal injection into a cavitation cell for the purpose of comminution. Arch. Min. Sci., Vol. 57, No 3, p. 769–778.
  • GALECKI G., SEN S., AKAR G., LI Y., 2013. Parametric Evaluation of Coal Comminution by Waterjets. International Journal of Coal Preparation and Utilization, 33:1, 36-46.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b5bfec5-f2b0-40bd-901f-518ed3e48dfc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.