PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prototyping of an Individualized Multi-Material Wrist Orthosis Using Fused Deposition Modelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the design and manufacturing process of an individualized wrist orthosis. The patient’s upper limb was 3D scanned and the orthosis was designed using a CAD system. Each part of the orthosis consists of two different materials that fulfill different functions. By using the double-head Fused Deposition Modelling machine it was possible to produce these parts in a single process without the need for additional assembly operations. The orthosis has been tested for mutual fit of parts, strength and comfort of use.
Twórcy
  • Poznan University of Technology, Chair of Production Engineering and Management, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Chair of Production Engineering and Management, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Chair of Production Engineering and Management, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Chair of Production Engineering and Management, ul. Piotrowo 3, 61-138 Poznan, Poland
  • Poznan University of Technology, Chair of Production Engineering and Management, ul. Piotrowo 3, 61-138 Poznan, Poland
Bibliografia
  • 1. Abilgaziyev A., et al., “Design and development of multi-nozzle extrusion system for 3D printer,” 2015 International Conference on Informatics, Electronics & Vision (ICIEV), Fukuoka, 2015, pp. 1-5, doi: 10.1109/ICIEV.2015.7333982.
  • 2. Andringa A., et al., “Long-term use of a static hand-wrist orthosis in chronic stroke patients: a pilot study.” Stroke research and treatment vol. 2013 (2013): 546093. doi:10.1155/2013/546093.
  • 3. Banaszewski J., et al., 3D printed models in mandibular reconstruction with bony free flaps, Journal Of Materials Science-Materials In Medicine, 2018, vol. 29, issue 2, DOI: 10.1007/s10856-018-6029-5.
  • 4. Baronio G., et al. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process, Applied bionics and biomechanics vol. 2016 (2016): 8347478. doi:10.1155/2016/8347478.
  • 5. Baronio G., Volonghi P., Signoroni A., Concept and Design of a 3D Printed Support to Assist Hand Scanning for the Realization of Customized Orthosis, Applied Bionics and Biomechanics, vol. 2017, Article ID 8171520, 8 pages, 2017. https://doi. org/10.1155/2017/8171520.
  • 6. Belokar R.M., Banga H.K., Kumar R., A Novel Approach for Ankle Foot Orthosis Developed by Three Dimensional Technologies. In: IOP Conference Series: Materials Science and Engineering [Internet]; 2017, DOI: 10.1088/1757- 899X/280/1/012030.
  • 7. Bijadi S, et al., Application of Multi-Material 3D Printing for Improved Functionality and Modularity of Open Source Low-Cost Prosthetics: A Case Study. ASME. Frontiers in Biomedical Devices, 2017 Design of Medical Devices Conference ():V001T10A003. doi:10.1115/DMD2017-3540.
  • 8. Chimento J., Highsmith M.J., Crane N., 3D printed tooling for thermoforming of medical devices, Rapid Prototyping Journal, 2011, Vol. 17 Issue: 5, pp. 387-392, https://doi. org/10.1108/13552541111156513.
  • 9. Davis F.J., Mitchell G.R. (2008) Polyurethane based materials with applications in medical devices. In: Bártolo, P. and Bidanda, B. (eds.) Bio-materials and prototyping applications in medicine. Springer, New York, pp. 27-48. ISBN 9780387476827.
  • 10. Espalin D., et al. “Multi-material, multi-technology FDM: exploring build process variations”, Rapid Prototyping Journal, 2014, Vol. 20 Issue: 3, pp.236- 244, https://doi.org/10.1108/RPJ-12-2012-0112.
  • 11. Faustini M.C. et al., Manufacture of Passive Dynamic ankle-foot orthoses using selective laser sintering, IEEE Trans Biomed Eng. 2008 Feb; 55 (2 Pt 1): 784–790. doi: 10.1109/TBME.2007.912638.
  • 12. Górski F., et al., Selection of Fused Deposition Modeling Process Parameters using Finite Element Analysis and Genetic Algorithms, Journal Of Multiple-Valued Logic And Soft Computing, 2019, vol. 32, issue 3/4, pp. 293-311.
  • 13. Guo R., et al. “Electrical and Thermal Conductivity of Polylactic Acid (PLA)-Based Biocomposites by Incorporation of Nano-Graphite Fabricated with Fused Deposition Modeling.” Polymers, vol. 11, no. 3, 2019, doi:10.3390/polym11030549.
  • 14. Haryńska, A., et al., Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology. Polymers 2018, 10, 1304.
  • 15. Khondoker M.A.H., Sameoto D., Design and characterization of a bi-material co-extruder for Fused Deposition Modeling. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), DOI: 10.1115/ IMECE201665330.
  • 16. Kuipers T., Doubrovski E., Verlinden J., 3D hatching: linear halftoning for dual extrusion fused deposition modeling. In Proceedings of the 1st Annual ACM Symposium on Computational Fabrication (SCF ‘17). ACM, New York, NY, USA, 2017, Article 2, 7 pages. DOI: https://doi. org/10.1145/3083157.3083163.
  • 17. Li, J. & Tanaka, H., Feasibility study applying a parametric model as the design generator for 3D–printed orthosis for fracture immobilization, 3D Printing in Medicine (2018) 4: 1. https://doi. org/10.1186/s41205-017-0024-1.
  • 18. Lopes L.R., Silva A.F., Carneiro O.S., Multi-material 3D printing: The relevance of materials affinity on the boundary interface performance, Additive Manufacturing, Volume 23, 2018, Pages 45-52, ISSN 2214-8604, https://doi.org/10.1016/j. addma.2018.06.027.
  • 19. Mavroidis C., et al., Patient specific ankle-foot orthoses using rapid prototyping, Journal of NeuroEngineering and Rehabilitation, 2011, 8:1, https:// doi.org/10.1186/1743-0003-8-1.
  • 20. Munguia J., Dalgarno K., Ankle foot orthotics optimization by means of composite reinforcement of free-form structures, 24th International SFF Symposium - An Additive Manufacturing Conference, SFF 2013, Pages 766-776.
  • 21. Palousek D., et al., Pilot study of the wrist orthosis design process, Rapid Prototyping Journal, 2014, vol. 20, issue: 1, pp. 27-32, https://doi.org/10.1108/ RPJ-03-2012-0027.
  • 22. Paterson, A., et al., Comparing additive manufacturing technologies for customised wrist splints. Rapid Prototyping Journal, 2015, 21 (3), pp. 230-243.
  • 23. Ready S., Whiting G., Ng T. N., Multi-Material 3D Printing, NIP & Digital Fabrication Conference, 2014 International Conference on Digital PrintingTechnologies, pp. 120-123(4).
  • 24. Silva, M., et al., An alternative method to produce metal/plastic hybrid components for orthopedics applications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2017, 231(1–2), 179– 186. https://doi.org/10.1177/1464420716664545.
  • 25. Wierzbicka N, et al., Prototyping of Individual Ankle Orthosis Using Additive Manufacturing Technologies. Advances in Science and Technology Research Journal. 2017;11(3):283-288. doi:10.12913/22998624/76070.
  • 26. Zawadzki P., Żywicki K., Smart product design and production control for effective mass customization in the Industry 4.0 concept, Management and Production Engineering Review, 2016, 7 (3), 105–112.
  • 27. https://www.evilldesign.com/cortex
  • 28. https://www.orfit.com/blog/the-volar-wrist-cock-up-orthosis/
  • 29. https://www.xkelet.com
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b5b3148-a75b-4732-ba8c-6d53806fcd9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.