Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In model predictive control (MPC), methods of linear offset free MPC are well established such as the disturbance model, the observer method and the state disturbance observer method. However, the observer gain in those methods is difficult to define. Based on the drawbacks observed in those methods, a novel algorithm is proposed to guarantee offset-free MPC under model-plant mismatches and disturbances by combining the two proposed methods which are the proposed Recursive Kalman estimated state method and the proposed Disturbance-Kalman state method. A comparison is made from existing methods to assess the ability of providing offset-free MPC on Wood-Berry distillation column. Results shows that the proposed offset free MPC algorithm has better disturbance rejection performance than the existing algorithms.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
153--173
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
autor
- Petrovietnam University, 762 Cach Mang Thang Tam Street, Long Toan Ward, Ba Ria City 78109, Ba Ria Vung Tau Province, Vietnam
autor
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Tronoh, Perak, Malaysia
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Tronoh, Perak, Malaysia
autor
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City755414, Viet Nam
Bibliografia
- [1] J.A. Rossiter: Model-based predictive control: a practical approach. CRC Press, 2013.
- [2] C.E. García, D.M. Prett and M. Morari: Model predictive control: Theory and practice - A survey. Automatica, 25 (1989), 335-348. DOI: 10.1016/0005-1098(89)90002-2.
- [3] M. Morari and J.H. Lee: Model predictive control: past, present and future. Computers & Chemical Engineering, 23 (1999), 667-682. DOI: 10.1016/S0098-1354(98)00301-9.
- [4] J.B. Rawlings: Tutorial overview of model predictive control. IEEE Control Systems, 20 (2000), 38-52. DOI: 10.1109/37.845037.
- [5] S.J. Qin and T.A. Badgwell: A survey of industrial model predictive control technology. Control Engineering Practice, 11 (2003), 733-764. DOI: 10.1016/S0967-0661(02)00186-7.
- [6] J.B. Rawlings and D.Q. Mayne: Model predictive control: Theory and design. Nob Hill Pub., 2009.
- [7] M.L. Darby and M. Nikolaou: MPC: Current practice and challenges. Control Engineering Practice, 20 (2012), 328-342. DOI: 10.1016/j.conengprac.2011.12.004.
- [8] S. Ogonowski, D. Bismor, and Z. Ogonowski: Control of complex dynamic nonlinear loading process for electromagnetic mill. Archives of Control Science, 30(3), (2020), 471-500. DOI: 10.24425/acs.2020.134674.
- [9] A.S. Badwe, S.L. Shah, S.C. Patwardhan, and R.S. Patwardhan: Model-plant mismatch detection in MPC applications using partial correlation analysis. IFAC Proceedings, 41 (2008), 14926-14933. DOI: 10.3182/20080706-5-KR-100I.02526.
- [10] Y. Tsai, R.B. Gopaluni, D. Marshman, and T. Chmelyk: A novel algorithm for model-plant mismatch detection for Model Predictive Controllers. IFAC-PapersOnUne, 48(8), (2015), 746-752. DOI: 10.1016/j.ifacol.2015.09.058.
- [11] R. Nebeluk and P. Marusak: Efficient MPC algorithms with variable trajectories of parameters weighting predicted control errors. Archives of Control Science, 30(2), (2020), 325-363. DOI: 10.24425/acs.2020.133502.
- [12] K.R. Musk and T.A. Badgwell: Disturbance modeling for offset-free linear model predictive control. Journal of Process Control, 12 (2002), 617-632. DOI: 10.1016/S0959-1524(01)00051-8.
- [13] G. Pannocchia and J.B. Rawlings: Disturbance models for offset-free model-predictive control. AIChE Journal, 49 (2003), 426-431. DOI: 10.1002/aic.690490213.
- [14] U. Maeder, F. Borrelli and M. Morari: Linear offset-free Model Predictive Control. Automatica, 45 (2009), 2214-2222. DOI: 10.1016/j.automatica.2009.06.005.
- [15] G. Pannocchia: Robust disturbance modeling for model predictive control with application to multivariable ill-conditioned processes. Journal of Process Control, 13(2003), 693-701. DOI: 10.1016/S0959-1524(02)00134-8.
- [16] G. Pannocchia and A. Bemporad: Combined design of disturbance model and observer for offset-free model predictive control. IEEE Transactions on Automatic Control, 52 (2007), 1048-1053. DOI: 10.1109/TAC.2007.899096.
- [17] M.R. Rajamani, J.B. Rawlings and S.J. Qin: Achieving stale estimation equivalence for misassigned disturbances in offset-free model predictive control. AIChE Journal, 55 (2009), 396-407. DOI: 10.1002/aic.11673.
- [18] U. Maeder and M. Morari: Offset-free reference tracking with model predictive control. Automatica, 46 (2010), 1469-1476. DOI: 10.1016/j.automatica.2010.05.023.
- [19] G. Pannocchia: Offset-free tracking MPC: A tutorial review and comparison of different formulations. In: Control Conference ECC, (2015), 527-532. DOI: 10.1109/ECC.2015.7330597.
- [20] P. Tatjewski: Disturbance modeling and state estimation for offset-free predictive control with state-space process models. International Journal of Applied Mathematics and Computer Science, 24 (2014), 313-323. DOI: 10.2478/amcs-2014-0023.
- [21] P. Tatjewski: Offset-free nonlinear Model Predictive Control with state-space process models. Archives of Control Sciences, 27 (2017), 595-615. DOI: 10.1515/acsc-2017-0035.
- [22] P. Tatjewski: Offset-Free Nonlinear Model Predictive Control. In: W. Mitkowski, J. Kacprzyk, K. Oprzędkiewicz, P. Skruch (Eds.), Trends in Advanced Intelligent Control, Optimization and Automation, Springer International Publishing, Cham, 2017, 33-14. DOI: 10.1007/978-3-319-60699-6.5.
- [23] P. Tatjewski and M. Ławryńczuk: Algorithms with state estimation in linear and nonlinear model predictive control. Computers & Chemical Engineering, 143(2020), 107065. DOI: 10J016/j.compchemeng.2020.107065.
- [24] G. Pannocchia and J.B. Rawlings: The velocity algorithm LQR: a survey. Tech. Rep. 2001-01 TWMCC, 2001, Department of Chemical Engineering, University of Wisconsin-Madison. URL: http://www.che.wisc.edu/jbrgroup/tech-reports/twmcc-2001-01.pdf.
- [25] G. Pannocchia, M. Gabiccini and A. Artoni: Offset-free MPC explained: Novelties, subtleties, and applications. IPAC-PapersOnUne, 48 (2015), 342-351. DOI: 10.1016/j.ifacol.2015.11.304.
- [26] D. Simon: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. John Wiley & Sons, 2006.
- [27] M.S. Tavazoei: Notes on integral performance indices in fractional-order control systems. Journal of Process Control, 20 (2010), 285-291. DOI: 10.1016/j.jprocont.2009.09.005.
- [28] R.K. Wood and M.W. Berry: Terminal composition control of a binary distillation column. Chemical Engineering Science, 28 (1973), 1707-1717. DOI: 10.1016/0009-2509(73)80025-9.
Uwagi
1. This work is funded by Petrovietnam University under grant code GV2002.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b586188-f039-4d0a-abdd-940b6b11cca5