PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Micro-Particle Image Velocimetry for imaging flows in passive microfluidic mixers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The micro-Particle Image Velocimetry (micro-PIV) was used to measure flow velocities in micro-channels in two passive micromixers: a microfluidic Venturi mixer and a microfluidic spiral mixer, both preceded by standard “Y” micromixers. The micro-devices were made of borosilicate glass, with micro-engineering techniques dedicated to micro-PIV measurements. The obtained velocity profiles show differences in the flow structure in both cases. The micro-PIV enables understanding the micro-flow phenomena and can help to increase reproducibility of micromixers in mass production.
Rocznik
Strony
441--450
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Lodz University of Technology, Institute of Turbomachinery, Wólczańska 219/223, 90-924 Łódź, Poland
autor
  • Wroclaw University of Science and Technology, Division of Microengineering and Fotovoltaics, Długa 61, 53-633 Wrocław, Poland
  • Wroclaw University of Science and Technology, Division of Microengineering and Fotovoltaics, Długa 61, 53-633 Wrocław, Poland
  • Technical University of Liberec, Institute of Novel Technologies and Applied Informatics, Studentska 1402/2, 461 17 Liberec 1, Czech Republic
  • Lodz University of Technology, Institute of Turbomachinery, Wólczańska 219/223, 90-924 Łódź, Poland
Bibliografia
  • [1] Whitesides, G.M. (2006). The origin and the future of microfluidics. Nature, 442/27, 368-373.
  • [2] Manz, Harrison, D., Verpoorte, E., Fettinger, J., Paulus, A., Ludi, H., Widmer, H.J. (1992). Chromatogr, A593, 253.
  • [3] Bargiel, S., Górecka-Drzazga, A., Dziuban, J., Prokaryn, P., Chudy, M., Dybko, A., Brzózka, Z. (2004). Nanoliter detectors for flow systems. Sensors and Actuators. A, Physical., 115(2/3), 245-251.
  • [4] Kubicki, W., Walczak, R., Dziuban, J. (2011). Injection, separation and fluorimetric detection of DNA in glass lab-on-a-chip for capillary gel electrophoresis. OpticaApplicata., 41(2), 409-416.
  • [5] Śniadek, P., Walczak, R., Dziuban, J., Jackowska, M., Antosik, P., Jaśkowski, J., Kempisty, B. (2011). Lab-on-a-chip for quality classification of pig oocytes. OpticaApplicata., 41(2), 417-422.
  • [6] Bembnowicz, P., Małodobra, M., Kubicki, W., Śniadek, P., Górecka-Drzazga, A., Dziuban, J., Jonkisz, A., Karpiewska, A., Dobosz, T., Golonka, L. (2010). Preliminary studies on LTCC based PCR microreactor. Sensors and Actuators. B, Chemical., 150(2), 715-721.
  • [7] Karczemska, A., Ralchenko, V., Bolshakov, A., Sovyk, D., Łysko, J.M., Fijałkowski, M., Hassard, J. (2011). Application of Diamond for Microfluidic Devices in. Implantexpert, ed. Nawrat, Z., Zabrze, 107-116.
  • [8] Karczemska, A. (2013). Diamond materials for microfluidic devices, in diamond-based materials for biomedical applications. ed. Narayan, R., Woodhead Publishing Series in Biomaterials., 55, Woodhead Publishing Limited, 256-271.
  • [9] Karczemska, A.T., Witkowski, D., Ralchenko, V., Bolshakov, A., Sovyk, D., Łysko, J.M., Fijałkowski, M., Bodzenta, J., Hassard, J. (2011). Diamond electrophoretic microchips - Joule heating effects. Materials Science and Engineering B, 176, 326-330.
  • [10] Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J. (1998). A particle image velocimetry system for microfluidics. Experiments in Fluids, 25, 316-319.
  • [11] Meinhart, C.D., Wereley, S.T., Santiago, J.G. (1999). PIV measurements of a microchannel flow. Experiments in Fluids, 27, 414-419.
  • [12] Shilpiekandula, V., Burns, D.J., Rifai, K.E., Youcef-Toumi, K., Shiguang, L. (2006). I Reading and S Fatt Yoon. Metrology of Microfluidic Devices: A Review, ICOMM, 49.
  • [13] Karczemska, A., Witkowski, D. (2012). Metrology of microfluidic devices. Cieplne Maszyny Przepływowe - Turbomachinery, 142, 55-73.
  • [14] Silva, G., Leal, N., Semiao, V. (2009). Determination of microchannels geometric parameters using micro-PIV. Chemical Engineering Research and Design, 87, 298-306.
  • [15] Gambhire, S., Patel, N., Gambhire, G., Kale, S. (2016). A Review on Different Micromixers and its Micromixing within Microchannel. International Journal of Current Engineering and Technology, 4.
  • [16] Lee, Ch-Y., Chang, Ch-L., Wang, Y-N., Fu, L-M. (2011). Microfluidic Mixing: A Review. Int. J. Mol. Sci., 12, 3263-3287.
  • [17] Lai, W.T., Menon, R.K. (2004). Flow Measurements in Microchannels Using a MicroPIV system. 15th Australasian Fluid Mechanics Conference, Sydney, Australia, 13-17.
  • [18] Williams, S.J., Park, Ch., Wereley, S.T. (2010). Advances and applications on microfluidic velocimetry techniques - review. Microfluid Nanofluid, 8, 709-726.
  • [19] Adamski, K., Kubicki, W., Walczak, R. (2016). 3D Printed electrophoretic lab-on-chip for DNA separation. Procedia Engineering, 168, 1454-1457.
  • [20] Kubicki, W., Paj ̨ak, B., Kucharczyk, K., Walczak, R., Dziuban, J.A. (2016). Rapid detection of highly pathogenic A (H7N7) avian in?uenza virus genetic markers in heterogenic samples utilizing on-chip SSCP-CE method. Sensors and Actuators B, 236, 926-936.
  • [21] Dziuban, J.A., Mróz, J., Szczygielska, M., Małachowski, M., Górecka-Drzazga, A., Walczak, R., Buła, W., Zalewski, D., Nieradko, Ł., Łysko, J., Koszur, J., Kowalski, P. (2004). Portable gas chromatograph with integrated components. Sensors and Actuators A, 115, 318-330.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b5795b6-3604-47f4-8820-e7eec47eebdc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.