PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of liquid flowrate on size of nanobubbles generated by porous-membrane modules

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to investigate the influence of distilled water flowrate in two different porousmembrane modules on the size of generated nitrogen nanobubbles. Modules had different diameter and number of membrane tubes inside the module. As bubbles are cut off from the membrane surface by a shear stress induced by the liquid flow, the change in the linear liquid velocity should result in a change of the generated bubble diameter. For both modules, higher flowrate of liquid induced generation of smaller bubbles, which was consistent with our expectations. This effect can help us in generation of bubbles of desired size.
Rocznik
Strony
335–--345
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Bunkin N.F., Kochergin A.V., Lobeyev A.V., Ninham B.W., Vinogradova O., 1996. Existence of charged submicrobubble clusters in polar liquids as revealed by correlation between optical cavitation and electrical conductivity. Colloids Surf., A, 110, 207–212. DOI: 10.1016/0927-7757(95)03422-6.
  • 2. Cademartiri L., Ozin G.A., Lehn, J.-M., 2009. Concepts of nanochemistry. Weinheim, WILEY-VCH, Weinheim
  • 3. Chu L.B., Xing X.H., Yu A.F., Zhou Y.N., Sun X.L., Jurcik B., 2007. Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere, 68, 1854–1860. DOI: 10.1016/j.chemosphere.2007.03.014.
  • 4. Ebina K., Shi K., Hirao M., Hashimoto J., Kawato Y., Kaneshiro S., Morimoto T., Kozumi K., Yoshikawa H., 2013. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLOS ONE, 8, 2–8. DOI: 10.1371/journal.pone.0065339.
  • 5. Etchepare R., Azevedo A., Calgaroto S., Rubio J., 2017. Removal of ferric hydroxide by flotation with micro and nanobubbles. Sep. Purif. Technol., 184, 347–353. DOI: 10.1016/j.seppur.2017.05.014.
  • 6. Ghosh P., 2009. Coalescence of bubbles in liquid. Bubble Sci. Eng. Technol., 1(1–2), 75–87.
  • 7. Von Gunten U., 2003. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res., 37, 1443–1467. DOI: 10.1016/S0043-1354(02)00457-8.
  • 8. Ikeura H., Kobayashi F., Tamaki M., 2011. Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. J. Food Eng., 103, 345–349. DOI: 10.1016/j.jfoodeng.2010.11.002.
  • 9. Khadre M.A., Yousef A.E., Kim J.-G., 2001. Microbiological aspects of ozone applications in food: A review. J. Food Sci., 66, 1242–1252. DOI: 10.1111/j.1365-2621.2001.tb15196.x.
  • 10. Khirani S., Kunwapanitchakul P., Augier F., Guigui C., Guiraud, P., Hébrard G., 2012. Microbubble generation through porous membrane under aqueous or organic liquid shear flow. Ind. Eng. Chem. Res., 51, 1997–2009. DOI: 10.1021/ie200604g.
  • 11. Kikuchi K., Tanaka Y., Saihara Y., Maeda M., Kawamura M., Ogumi Z., 2006. Concentration of hydrogen nanobubbles in electrolyzed water. J. Colloid Interface Sci., 298, 914–919. DOI: 10.1016/j.jcis.2006.01.010.
  • 12. Kobayashi F., Ikeura H., Ohsato S., Goto T., Tamaki M., 2011. Disinfection using ozone microbubbles to inactivate Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Crop Prot., 30, 1514–1518. DOI: 10.1016/j.cropro.2011.07.018.
  • 13. Kukizaki M., Goto M., 2006. Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes. J. Membr. Sci., 281, 386–396. DOI: 10.1016/j.memsci.2006.04.007.
  • 14. Kukizaki M., Wada T., 2008. Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes. Colloids Surf., A, 317, 146–154. DOI: 10.1016/j.colsurfa. 2007.10.005.
  • 15. Kutty S.R.M., Winarto F.E.W., Gilani S.I.U., Anizam A.A., Karimah W.W.Z., Isa M.H., 2010. Degradation of organic matter using a submerged microbubble diffuser in a biological wastewater treatment system. In: Popov V.,
  • 16. Itoh H., Mander U., Brebbia C.A. (Eds.). Waste Management and the Environment V. WIT Press, USA, 1, 415-423.
  • 17. Li H., Hu L., Song D., Lin F., 2014. Characteristics of micro-nano bubbles and potential application in groundwater bioremediation. Water Environ. Res., 86, 844–851. DOI: 10.2175/106143014X14062131177953.
  • 18. Matsumoto M., Tanaka K., 2008. Nano bubble-size dependence of surface tension and inside pressure. Fluid Dyn. Res., 40, 546–553. DOI: 10.1016/j.fluiddyn.2007.12.006.
  • 19. Park J.S., Kurata K., 2009. Application of microbubbles to hydroponics solution promotes lettuce growth. Hort- Technol., 19(1), 212–215.
  • 20. Sreekanth R., Prasanthkumar K.P., Sunil Paul M.M., Aravind U.K., Aravindakumar C.T., 2013. Oxidation reactions of 1- and 2-naphthols: An experimental and theoretical study. J. Phys. Chem. A, 117, 11261–11270. DOI: 10.1021/jp4081355.
  • 21. Srinivas A., Ghosh P., 2012. Coalescence of bubbles in aqueous alcohol solutions. Ind. Eng. Chem. Res., 51, 795–806. DOI: 10.1021/ie202148e.
  • 22. Sunil Paul M.M., Aravind U.K., Pramod G., Aravindakumar C.T., 2013. Oxidative degradation of fensulfothion by hydroxyl radical in aqueous medium. Chemosphere, 91, 295–301. DOI: 10.1016/j.chemosphere.2012.11.033.
  • 23. Takahashi M., 2009. Base and technological application of micro-bubble and nanobubble. Mater. Integration, 22, 2–19.
  • 24. Terasaka K., Hirabayashi A., Nishino T., Fujioka S., Kobayashi D., 2011. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem. Eng. Sci., 66, 3172–3179. DOI: 10.1016/j.ces.2011.02.043.
  • 25. Tsuge H., 2015. Micro- and nanobubbles. fundamentals and applications. Pan Stanford Publishing.
  • 26. Xiao Q., Liu Y., Guo Z., Liu Z., Zhang X., 2017. How nanobubbles lose stability: Effects of surfactants. Appl. Phys. Lett., 111, 131601. DOI: 10.1063/1.5000831.
  • 27. Zhang L.J., Chen H., Li Z.X., Fang H.P., Hu J., 2008. Long lifetime of nanobubbles due to high inner density. Sci. China, Ser. G, 51, 219–224. DOI: 10.1007/s11433-008-0026-5.
  • 28. Zhong W.W., Huang Y.F., Gan D., Xu J.Y., Li H., Wang G., Meng S., Chen L., 2016. Wetting behavior of water on silicon carbide polar surfaces. Phys. Chem. Chem. Phys., 18, 28033–28039. DOI: 10.1039/C6CP04686J.
  • 29. Zimmerman W.B., Tesaˇr V., Butler S., Bandulasena H.C.H., 2008. Microbubble Generation. Recent Pat. Eng., 2, 1–8. DOI: 10.2174/187221208783478598.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b538b29-abcd-4388-a9a2-acd97a2cc853
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.