Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, highly ordered porous anodic alumina (PAA) with tapered pore structure and interpore distance (Dc) in the range of 550 nm to 650 nm were fabricated. To produce hexagonal close-packed pore structure a two-step process, combining anodization in etidronic acid electrolyte in the first step and high-concentration, high-temperature anodization in citric acid electrolyte in the second step, was applied. The Al pre-patterned surface obtained in the first anodization was used to produce regular tapered pore arrays by subsequent and alternating anodization in 20 wt.% citric acid solution and pore wall etching in 10 wt.% phosphoric acid solution. The height of the tapered pores was ranging between 2.5 μm and 8.0 μm for the PAA with Dc = 550 nm and Dc = 650 nm, respectively. The geometry of the obtained graded structure can be used for a production of efficient antireflective coatings operating in IR spectral region.
Wydawca
Czasopismo
Rocznik
Tom
Strony
511--518
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warszawa, Poland
autor
- Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego St., 00-908 Warszawa, Poland
Bibliografia
- [1] CHATTOPADHYAY S., HUANG Y.F., JEN Y.J., GANGULY A., CHEN K.H., CHEN L.C., Mater. Sci. Eng. R, 69 (2010), 1.
- [2] RAUT H.K., GANESH V.A., NAIR A.S., RAMAKRISHNA S., Energ. Environ. Sci., 4 (2011), 3779.
- [3] HOBBS D.S., MACLEOD B.D., Proc. SPIE, 5786 (2005), 349.
- [4] FREY B., LEVITON D., MADISON T., Proc. SPIE, 6273 (2006), 62732J.
- [5] GULDIN S., KOHN P., STEFIK M., SONG J., DIVITINI G., ECARLA F., DUCATI C., WIESNER U., STEINER U., Nano Lett., 13 (2013), 5329.
- [6] JOO W., KIM H.J., KIM J.K., Langmuir, 26 (2010), 5110.
- [7] CAMARGO K.C., MICHELS A.F., RODEMBUSCH F.S., HOROWITZ F., Chem. Commun., 48 (2012), 4992.
- [8] YILDRIM A., KHUDIYEV T., DAGLAR B., BUDUNOGLU H., OKYAY A.K., BAYINDIR M., ACS Appl. Mater. Inter., 5 (2013), 853.
- [9] YANAGISHITA T., NISHIO K., MASUDA H., Appl. Phys. Express, 2 (2009), 022001.
- [10] RAUT H.K., DINACHALI S.S., LOKE Y.C., GANESAN R., ANSAH-ANTWI K.K., GÓRA A., KHOO E.H., GANESH V.A., SAIFULLAH M.S.M., RAMAKRISHNA S., ACS Nano, 9 (2015), 1305.
- [11] RAUT H.K., DINACHALI S.S., HE A.Y., GANESH V.A., SAIFULLAH M.S.M., LAW J., RAMAKRISHNA S., Energ. Environ. Sci., 6 (2013), 1929.
- [12] RAHMAN A., ASHRAF A., XIN H., TONG X., SUTTER P., EISAMAN M.D., BLACK C.T., Nat. Commun., 6 (2015), 5963.
- [13] ASADOLLAHBAIK A., BODEN S.A., CHARLTON M.D.B., PAYNE D.N.R., COX S., BAGNALL D.M., Opt. Express, 22 (2014), A402.
- [14] CHEN J.Y., CHANG W.-L., HUANG C.K., SUN K.W., Opt. Express, 19 (2011), 14411.
- [15] RAGUIN D.H., MORRIS G.M., Appl. Opt., 32 (1993), 1154.
- [16] SOUTHWELL W.H., J. Opt. Soc. Am. A, 8 (1991), 549.
- [17] GONZALEZ F.L., GORDON M.J., Opt. Express, 22 (2014), 12808.
- [18] LI J., ZHU J., GAO X., Small, 10 (2014), 2578.
- [19] CAI J., QI L., Mater. Horiz., 2 (2015), 37.
- [20] LEE W., LEE J.-K., Adv. Mater., 14 (2002), 1187.
- [21] LI J., LI C., GAO X., Appl. Surf. Sci., 257 (2011), 10390.
- [22] LI C., LI J., CHEN C., ZHU J., GAO X., Chem. Commun., 48 (2012), 5100.
- [23] LI J., LI C., CHEN C., HAO Q., WANG Z., ZHU J., GAO X., ACS Appl. Mater. Inter., 4 (2012), 5678.
- [24] SUN B., LI J., JIN X., ZHOU C., HAO Q., GAO X., Electrochim. Acta, 112 (2013), 327.
- [25] CHOI K., PARK S.H., SONG Y.M., LEE Y.T., HWANGBO C.K., YANG H., LEE H.S., Adv. Mater., 22 (2010), 3713.
- [26] CHOI K., PARK S.H., SONG Y.M., CHOC C., LEE H.S., J. Mater. Chem., 22 (2012), 17037.
- [27] KIKUCHI T., NISHINAGA O., NATSUI S., SUZUKI R.O., Electrochim. Acta, 156 (2015), 235.
- [28] TAKENAGA A., KIKUCHI T., NATSUI S., SUZUKI R.O., ECS Solid State Lett., 4 (2015), P55.
- [29] KIKUCHI T., NISHINAGA O., NATSUI S., SUZUKI R.O., Appl. Surf. Sci., 34 (2015), 119.
- [30] KIKUCHI T., NAKAJIMA D., NISHINAGA O., NATSUI S., SUZUKI R.O., Curr. Nanosci., 11 (2015), 560.
- [31] HORCAS I., FERNANDEZ R., GOMEZ-RODRIGUEZ J.M., COLCHERO J., GOMEZ-HERRERO J., BARO A.M., Rev. Sci. Instrum., 78 (2007), 013705.
- [32] STĘPNIOWSKI W.J., NOWAK-STĘPNIOWSKA A., BOJAR Z., Mater. Charact., 78 (2013), 79.
- [33] STĘPNIOWSKI W.J., BOJAR Z., Surf. Coat. Tech., 206 (2011), 265.
- [34] STĘPNIOWSKI W.J., ZASADA D., BOJAR Z., Surf. Coat. Tech., 206 (2011), 1416.
- [35] SU Z., ZHOU W., JIANGA F., HONG M., J. Mater. Chem., 22 (2012), 535.
- [36] KELLER F., HUNTER M.S., ROBINSON D.L., J. Electrochem. Soc., 100 (1953), 411.
- [37] EBIHARA K., TAKAHASHI H., NAGAYAMA M., J. Met. Finish. Soc. Jpn., 34 (1983), 548.
- [38] PARKHUTIK W.P., SHERSHULSKY V.I., J. Phys. D Appl. Phys., 25 (1992), 1258.
- [39] LI F.Y., ZHANG L., METZGER R.M., Chem. Mater., 10 (1998), 2470.
- [40] HAN X.Y., SHEN W.Z., J. Electroanal. Chem., 655 (2011), 56.
- [41] NOREK M., DOPIERAŁA M., STĘPNIOWSKI W.J., J. Electroanal. Chem., 750 (2015), 79.
- [42] CHEN S.H., CHAN D.-S., CHEN C.-K., CHANG T.-H., LAI Y.-H., LEE C.-C., Jpn. J. Appl. Phys., 49 (2010), 015201.
- [43] WANG Q., LONG Y., SUN B., J. Porous Mat., 20 (2013), 785.
- [44] BELLEMARE J., SIROIS F., MÉNARD D., J. Electrochem. Soc., 161 (2014), E75.
- [45] CHEN X., YU D., CAO L., ZHU X., SONG Y., HUANG H., LU L., CHEN X., Mater. Res. Bull., 57 (2014), 116.
- [46] COZ LE F., ARURAULT L., DATAS L., Mater. Charact., 61 (2010), 283.
- [47] WADA K., SHIMOHIRA T., YAMADA M., BABA N., J. Mater. Sci., 21 (1986), 3810.
- [48] BURGHOORN M., ROOSEN-MELSEN D., RIET DE J., SABIK S., VROON Z., YAKIMETS I., BUSKENS P., Materials, 6 (2013), 3710.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b537d29-6fa6-4e02-960d-b91038f4d91f