PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of operational satellite bio-optical algorithms in different water types in southeastern Arabian Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The in situ remote sensing reflectance (Rrs) and optically active substances (OAS) measured using hyperspectral radiometer, were used for optical classification of coastal waters in the southeastern Arabian Sea. The spectral Rrs showed three distinct water types, that were associated with the variability in OAS such as chlorophyll-a (chl-a), chromophoric dissolved organic matter (CDOM) and volume scattering function at 650 nm (β650). The water types were classified as Type-I, Type-II and Type-III respectively for the three Rrs spectra. The Type-I waters showed the peak Rrs in the blue band (470 nm), whereas in the case of Type-II and III waters the peak Rrs was at 560 and 570 nm respectively. The shifting of the peak Rrs at the longer wavelength was due to an increase in concentration of OAS. Further, we evaluated six bio-optical algorithms (OC3C, OC4O, OC4, OC4E, OC3M and OC4O2) used operationally to retrieve chl-a from Coastal Zone Colour Scanner (CZCS), Ocean Colour Temperature Scanner (OCTS), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), MEdium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and Ocean Colour Monitor (OCM2). For chl-a concentration greater than 1.0 mg m−3, algorithms based on the reference band ratios 488/510/520 nm to 547/550/555/560/565 nm have to be considered. The assessment of algorithms showed better performance of OC3M and OC4. All the algorithms exhibited better performance in Type-I waters. However, the performance was poor in Type-II and Type-III waters which could be attributed to the significant co-variance of chl-a with CDOM.
Czasopismo
Rocznik
Strony
317--326
Opis fizyczny
Bibliogr. 37 poz., tab., wykr., mapy
Twórcy
autor
  • ICAR – Central Institute of Fisheries Technology, Kochi, India
  • Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, India
autor
  • ICAR – Central Institute of Fisheries Technology, Kochi, India
autor
  • ICAR – Central Institute of Fisheries Technology, Kochi, India
autor
  • Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, India
  • Indian Council for Agricultural Research, New Delhi, India
Bibliografia
  • [1] Balch, W. M., Drapeau, D., Fritz, J., Bowler, B., Nolan, J., 2001. Optical backscattering in the Arabian Sea — continuous underway measurements of particulate inorganic and organic carbon. Deep-Sea Res. Pt. I 48 (11), 2423—2452, http://dx.doi.org/10.1016/S0967-0637(01)00025-5.
  • [2] Chauhan, P., Mohan, M., Sarangi, R. K., Kumari, B., Nayak, S., Matondkar, S. G. P., 2002. Surface chlorophyll estimation in the Arabian Sea using IRS-P4 OCM Ocean Color Monitor (OCM) satellite data. Int. J. Remote Sens. 23 (8), 1663—1676, http://dx.doi.org/10.1080/01431160110075866.
  • [3] Desa, E. S., Suresh, T., Matondkar, S. G. P., Desa, E., 2001. Sea truth validation of SeaWiFS ocean colour sensor in the coastal waters of the eastern Arabian Sea. Curr. Sci. India 80 (7), 854—860.
  • [4] George, R., Muraleedharan, K. R., Martin, G. D., Sabu, P., Gerson, V. J., Dineshkumar, P. K., Nair, S. M., Chandramohanakumar, N., Nair, K. K. C., 2013. Nutrient biogeochemistry of the eastern Arabian Sea during the southwest monsoon retreat. Environ. Earth Sci. 68 (3), 703—718, http://dx.doi.org/10.1007/s12665-012-1772-2.
  • [5] Hu, C., Montgomery, E. T., Schmitt, R. W., Muller-Karger, F. E., 2004. The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep-Sea Res. Pt. II 51 (10—11), 1151—1171, http://dx.doi.org/10.1016/j.dsr2.2004.04.001.
  • [6] Iyer, P. C. S., Sindhu, M., Kulkarni, S. G., Tambe, S. S., Kulkarni, B. D., 2003. Statistical analysis of the physic-chemical data on the coastal waters of Cochin. J. Environ. Monitor. 5 (2), 324—327, http://dx.doi.org/10.1039/B209219K.
  • [7] Jorgenson, S. V., 1999. Standard Case 1 algorithms in Danish coastal waters. Int. J. Remote Sens. 20 (7), 1289—1301, http://dx.doi.org/10.1080/014311699212731.
  • [8] Joshi, M., Rao, A. D., 2012. Response of Southwest monsoon winds on shelf circulation off Kerala coast, India. Cont. Shelf Res. 32, 62—70, http://dx.doi.org/10.1016/j.csr.2011.10.015.
  • [9] Jyothibabu, R., Madhu, N. V., Jayalakshmi, K. V., Balachandran, K. K., Shiyas, C. A., Martin, G. D., Nair, K. K. C., 2006. Impact of fresh water influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters — India). Estuar. Coast. Shelf Sci. 69 (3—4), 505—518, http://dx.doi.org/10.1016/j.ecss.2006.05.013.
  • [10] Kumar, H. P. V., Kumar, M. N., 1996. On the flow and thermohaline structure off Cochin during pre-monsoon season. Cont. Shelf Res. 16 (4), 457—468, http://dx.doi.org/10.1016/j.ecss.2006.05.013.
  • [11] Kutser, T., Vahtma, E., Martin, G., 2006. Assessing suitability of multispectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations. Estuar. Coast. Shelf Sci. 67 (3), 521—529, http://dx.doi.org/10.1016/j.ecss.2005.12.004.
  • [12] Lee, M. E., Lewis, M .R., 2003. A new method for the measurement of the optical volume scattering function in the upper ocean. J. Atmos. Ocean. Tech. 20 (4), 563—571, http://dx.doi.org/10.1175/1520-0426(2003)20<563:ANMFTM>2.0.CO;2.
  • [13] Lee, Z., Carder, K. L., Arnone, R. A., 2002. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 41 (27), 5755—5772, http://dx.doi.org/10.1364/AO.41.005755.
  • [14] McClain, M. E., Fargion, G. S., 1999. Simbios project annual report. Document ID: 20000013962, Report/Patent Number: NASA/TM-1999-209486, NAS 1.15:209486 Rept-2000-00655. Goddard Space Flight Center, Greenbelt, Maryland, 132 pp.
  • [15] Mckee, D., Cunningham, A., 2006. Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents. Estuar. Coast. Shelf Sci. 68 (1), 305—316, http://dx.doi.org/10.1016/j.ecss.2006.02.010.
  • [16] Menon, H. B., Lotliker, A. A., Moorthy, K. K., Nayak, S. R., 2006. Variability of remote sensing reflectance and implications for optical remote sensing — a study along the eastern and northeastern waters of Arabian Sea. Geophys. Res. Lett. 33, L15602, http://dx.doi.org/10.1029/2006GL026026.
  • [17] Menon, H. B., Lotliker, A. A., Nayak, S. R., 2005. Pre-monsoon biooptical properties in estuarine, coastal and Lakshadweep waters. Estuar. Coast. Shelf Sci. 63 (1), 211—223, http://dx.doi.org/10.1016/j.ecss.2004.11.015.
  • [18] Minu, P., Lotliker, A. A., Shaju, S. S., Santhosh Kumar, B., Ashraf, P. M., Meenakumari, B., 2014. Effect of optically active substances and atmospheric correction schemes on remote-sensing reflectance at a coastal site off Kochi. Int. J. Remote Sens. 35 (14), 5434—5447, http://dx.doi.org/10.1080/01431161.2014.926420.
  • [19] Mobley, C. D., 1994. The optical properties of water. In: Bass, M. (Ed.), Handbook of Optics, 2nd ed., vol. I. McGraw-Hill, New York, 1248 pp.
  • [20] Morel, A., 1991. Light and marine photosynthesis: a spectral model with geo-chemical and climatological implications. Prog. Oceanogr. 26 (3), 263—306, http://dx.doi.org/10.1016/0079-6611(91)90004-6.
  • [21] Morel, A., Claustre, H., Antoine, D., Gentili, B., 2007. Natural variability of bio-optical properties in Case 1 waters: attenuation and reflectance within the visible and near-UV spectral domains, as observed in South Pacific and Mediterranean waters. Biogeosci. Discuss. 4 (4), 2147—2178.
  • [22] Morel, A., Prieur, L., 1977. Analysis of variations in ocean color. Limnol. Oceanogr. 22 (4), 709—720.
  • [23] Nagamani, P. V., Chauhan, P., Dwivedi, R. M., 2008. Development of chlorophyll a algorithm for Ocean Colour Monitor onboard OCEANSAT-2 satellite. IEEE Geosci. Remote Sens. Lett. 5 (3), 527—531, http://dx.doi.org/10.1109/LGRS.2008.923213.
  • [24] Nair, V. E., Devassy, V. P., Madhupratap, M., 1992. Blooms of phytoplankton along the coast of India associated with nutrient enrichment and the response of zooplankton. In: Vollenweider, R. A., Marchetti, R., Viviani, R. (Eds.), Marine Coastal Eutrophication. Elsevier, Amsterdam, London, New York, Tokyo, 819—828.
  • [25] O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., McClain, C. R., 1998. Ocean colour chlorophyll algorithms for SeaWiFS. J. Geophys. Res. 103 (C11), 24937—24953, http://dx.doi.org/10.1029/98JC02160.
  • [26] O'Reilly, J. E., Maritorena, S., Siegel, D., O'Brien, M. C., Toole, D., Mitchell, B. G., et al., 2000. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. In: Hooker, S. B., Firestone, E. R. (Eds.), SeaWiFS postlaunch technical report series. SeaWiFS post-launch calibration and validation analyses, Part 3, vol. 11 NASA/GSFC. 9—23.
  • [27] Ouillon, S., Petrenko, A., 2005. Above-water measurements of reflectance and chlorophyll-a algorithms in the Gulf of Lions, NW Mediterranean Sea. Opt. Exp. 13 (7), 2531—2548, http://dx.doi.org/10.1364/OPEX.13.002531.
  • [28] Pierson, D. C., Strombeck, N., 2000. A modelling approach to evaluate preliminary remote sensing algorithms: use of water quality data from Swedish Great Lakes. Geophysica 36 (1—2), 177—202.
  • [29] Sathe, P. V., Jadhav, N., 2001. Retrieval of chlorophyll from the sealeaving radiance in the Arabian Sea. J. Indian Soc. Remote Sens. 29 (1—2), 97—106.
  • [30] Shanmugam, P., 2011. A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters. J. Geophys. Res.-Oceans 116, C04016, http://dx.doi.org/10.1029/2010JC006796.
  • [31] Siegal, D. A., Maritorena, S., Nelson, N. B., Hansel, D. A., Lorenzi-Kayser, M., 2002. Global distribution and dynamics of colored dissolved and detrital organic materials. J. Geophys. Res. 107, 3228, http://dx.doi.org/10.1029/2001JC000965.
  • [32] Srinivas, K., Dineshkumar, P. K., 2006. Atmospheric forcing on the seasonal variability of sea level at Cochin, South west of India. Cont. Shelf Res. 26 (10), 1113—1133, http://dx.doi.org/10.1016/j.csr.2006.03.010.
  • [33] Srinivas, K., Revichandran, C., Maheswaran, P. A., Ashraf, M. T. T., Murukesh, N., 2003. Propagation of tides in the Cochin estuarine system, South west coast of India. Indian J. Mar. Sci. 32 (1), 14—24.
  • [34] Thomas, J. V., Premlal, P., Sreedevi, C., Kurup, M. B., 2004. Immediate effect of bottom trawling on the physicochemical parameters in the inshore waters (Cochin-Munambum) of Kerala. Indian J. Fish. 51 (3), 277—286.
  • [35] Tilstone, G. H., Ingrid, M., Benavides, A., Pradhan, Y., Shutler, J. D., Groom, S., Sathyendranath, S., 2011. An assessment of chlorophyll-a algorithms available for SeaWiFS in coastal and open areas of the Bay of Bengal and Arabian Sea. Remote Sens. Environ. 115 (9), 2277—2291, http://dx.doi.org/10.1016/j.rse.2011.04.028.
  • [36] Tilstone, G. H., Lotliker, A., Miller, P. I., Ashraf, P. M., Kumar, T. S., Suresh, T., Ragavan, B. R., Menon, H. B., 2013. Assessment of MODIS-Aqua chlorophyll a algorithms in coastal and shelf waters of the eastern Arabian Sea. Cont. Shelf Res. 65 (1), 14—26, http://dx.doi.org/10.1016/j.csr.2013.06.003.
  • [37] Tzortziou, M., Subramaniam, A., Herman, J. R., Gallegos, C. L., Neale, P. J., Harding Jr., L. W., 2007. Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay. Estuar. Coast. Shelf Sci. 72 (1), 16—32, http://dx.doi.org/10.1016/j.ecss.2006.09.018.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b5147b0-b9c1-4556-ae13-b4241a6dd77c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.