PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green Nanofertilizers – The Need for Modern Agriculture, Intelligent, and Environmentally-Friendly Approaches

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The distinctive qualities and wide array of possible applications of nanotechnology have garnered considerable attention. Nanotechnology offers a groundbreaking way for expanding agricultural output that is also ecologically benign, helpful to living things, and economically priced – all without losing quality. There is a growing trend towards using eco-friendly technologies as substitutes for conventional agricultural inputs, such as fertilizers and insecticides. With the aid of nanotechnology, the confines of conventional farming techniques can be overcome. As a result, it becomes essential for investigators to devote their energies to the noteworthy nanoparticles (NPs) in agriculture investigations that have been distributed. It offered a fresh perspective on the development and application of nanoparticles as nano-fertilizers and nano-pesticides in agriculture and a way to heighten bio-factor execution. Furthermore, we discuss the relations of NPs with plants, the perils and putrefaction of nanomaterials in plants, and the utility of NPs in the reduction of stress triggered by heavy metal toxicity and abiotic factors. It is imperative that nano-fertilizers are practiced to reduce the environmental maltreatment caused by conventional, inorganic fertilizers. Nano-fertilizers are more sensitive and have the ability to penetrate the epidermis, empowering them to promote nutrient consumption efficiency while reducing nutrient overabundance. A study found that NPs may cause oxidative stress symptoms in higher plants if they adhere to cell surfaces or organelles. Understanding the benefits and drawbacks of using nano-fertilizers instead of conventional fertilizers is valuable, and it is the purpose of this book chapter to provide this information.
Twórcy
  • Department of Biological Sciences, Al Hussein Bin Talal University, P.O. Box 20, Maan, Jordan
  • Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
  • Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
  • Department of Genetics and Plant Breeding, Banaras Hindu University, Varanasi, India
  • Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
  • Department of Biological Sciences, Al Hussein Bin Talal University, P.O. Box 20, Maan, Jordan
  • Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
  • Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
  • Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
  • Saint Peterburg State Chemical and Pharmaceutical University, Ulitsa Professora Popova, 14, лит. А, St Petersburg, 197022 Russia
  • Department of Plant Production & Protection, College of Agriculture, Jerash University, Jerash, Jordan
  • Department of Plant Production & Protection, College of Agriculture, Jerash University, Jerash, Jordan
Bibliografia
  • 1. Abdelnour, S.A., El-Saadony, M.T., Saghir, S.A.M., Abd El-Hack, M.E., Al-shargi, O.Y.A., Al-Gabri, N., Salama, A., 2020. Mitigating negative impacts of heat stress in growing rabbits via dietary prodigiosin supplementation. Livest. Sci. 240, 104220. https://doi.org/10.1016/J.LIVSCI.2020.104220
  • 2. Adelere, I.A., Lateef, A., 2016. A novel approach to the green synthesis of metallic nanoparticles: The use of agro-wastes, enzymes, and pigments. Nano-technol. Rev. 5, 567–587. https://doi.org/10.1515/ntrev-2016-0024/asset/graphic/j_ntrev-2016-0024_fig_006.jpg
  • 3. Ahmed, R., Uddin, M.K., Quddus, M.A., Samad, M.Y.A., Hossain, M.A.M., Haque, A.N.A., 2023. Impact of Foliar Application of Zinc and Zinc Oxide Nanoparticles on Growth, Yield, Nutrient Uptake and Quality of Tomato. Hortic. 2023, Vol. 9, Page 162 9, 162. https://doi.org/10.3390/horticulturae9020162
  • 4. Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S., 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 7, 17–28. https://doi.org/10.1016/J.JARE.2015.02.007
  • 5. Alabdallah, N.M., Alzahrani, H.S., 2020. The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi J. Biol. Sci. 27, 3132–3137. https://doi.org/10.1016/J.SJBS.2020.08.005
  • 6. Alam, P., Arshad, M., Al-Kheraif, A.A., Azzam, M.A., Al Balawi, T., 2022. Silicon Nanoparticle-Induced Regulation of Carbohydrate Metabolism, Photosynthesis, and ROS Homeostasis in Solanum lycopersicum Subjected to Salinity Stress. ACS Omega 7, 31834–31844. https://doi.org/10.1021/acsomega.2c02586/asset/images/large/AO2C02586_0008.JPEG
  • 7. Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A., 2016. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67. https://doi.org/10.2147/NSA.S99986
  • 8. Ali, S.S., Al-Tohamy, R., Koutra, E., Moawad, M.S., Kornaros, M., Mustafa, A.M., Mahmoud, Y.A.G., Badr, A., Osman, M.E.H., Elsamahy, T., Jiao, H., Sun, J., 2021. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Sci. Total Environ. 792. https://doi.org/10.1016/J.SCITOTENV.2021.148359
  • 9. Alsamadany, H., Alharby, H.F., Al-Zahrani, H.S., Al-zahrani, Y.M., Almaghamsi, A.A., Abbas, G., Farooq, M.A., 2022. Silicon-nanoparticles doped biochar is more effective than biochar for mitigation of arsenic and salinity stress in Quinoa: Insight to human health risk assessment. Front. Plant Sci. 13, 3154. https://doi.org/10.3389/FPLS.2022.989504/BIBTEX
  • 10. Avellan, A., Yun, J., Morais, B.P., Clement, E.T., Rodrigues, S.M., Lowry, G. V., 2021. Critical review: Role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ. Sci. Technol. 55, 13417–13431. https://doi.org/10.1021/acs.est.1C00178/suppl_file/ES1C00178_SI_001.pdf
  • 11. Bharti, A.S., Sharma, S., Shukla, N., Uttam, K.N., 2018. Steady state and time resolved laser-induced fluorescence of garlic plants treated with titanium dioxide nanoparticles. https://doi.org/10.1080/00387010.2017.1417871 51, 45–54. https://doi.org/10.1080/00387010.2017.1417871
  • 12.Cai, L., Liu, Changyun, Fan, G., Liu, Chaolong, Sun, X., 2019. Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environ. Sci. Nano 6, 3653–3669. https://doi.org/10.1039/C9EN00850K
  • 13.Chatzifragkou, A., Kosik, O., Prabhakumari, P.C., Lovegrove, A., Frazier, R.A., Shewry, P.R., Charalampopoulos, D., 2015. Biorefinery strategies for upgrading Distillers’ Dried Grains with Solubles (DDGS). Process Biochem. 50, 2194–2207. https://doi.org/10.1016/J.PROCBIO.2015.09.005
  • 14. Chhipa, H., Joshi, P., 2016. Nanofertilisers, Nanopesticides and Nanosensors in Agriculture 247–282. https://doi.org/10.1007/978-3-319-39303-2_9
  • 15. Choi, I.S., Lee, Y.G., Khanal, S.K., Park, B.J., Bae, H.J., 2015. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl. Energy 140, 65–74. https://doi.org/10.1016/J.APENERGY.2014.11.070
  • 16. Das, A., Das, B., Das, A., Das, B., 2019. Nanotechnology a Potential Tool to Mitigate Abiotic Stress in Crop Plants. Abiotic Biot. Stress Plants. https://doi.org/10.5772/INTECHOPEN.83562
  • 17. Das, C.K., Jangir, H., Kumar, J., Verma, S., Mahapatra, S.S., Philip, D., Srivastava, G., Das, M., 2018. Nano-pyrite seed dressing: a sustainable design for NPK equivalent rice production. Nanotechnol. Environ. Eng. 2018 31 3, 1–14. https://doi.org/10.1007/S41204-018-0043-1
  • 18. Davari, M.R., Bayat Kazazi, S., Akbarzadeh Pivehzhani, O., 2017. Nanomaterials: Implications on agroecosystem. Nanotechnol. An Agric. Paradig. 59–71. https://doi.org/10.1007/978-981-10-4573-8_4/cover
  • 19. Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J., Khorasani, R., 2016. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic. (Amsterdam). 210, 57–64. https://doi.org/10.1016/J.SCIENTA.2016.07.003
  • 20. Davod, T., Reza, Z., Azghandi Ali, V., Mehrdad, C., 2011. Effects of Nanosilver and Nitroxin Biofertilizer on Yield and Yield Components of Potato Minitubers. Int. J. Agric. Biol.
  • 21. Delfani, M., Baradarn Firouzabadi, M., Farrokhi, N., Makarian, H., 2014. Some Physiological Responses of Black-Eyed Pea to Iron and Magnesium Nanofertilizers. https://doi.org/10.1080/00103624.2013.863911 45, 530–540. https://doi.org/10.1080/00103624.2013.863911
  • 22. Dennis, S., Deng, Q., Hui, D., Wang, J., Iwuozo, S., Yu, C.-L., Reddy, C., Dennis, S., Deng, Q., Hui, D., Wang, J., Iwuozo, S., Yu, C.-L., Reddy, C., 2015. Infield management practices for mitigating soil CO2 and CH4 fluxes under corn (Zea mays) production system in Middle Tennessee. Am. J. Clim. Chang. 4, 367–378. https://doi.org/10.4236/AJCC.2015.44029
  • 23. Dey, A., Somaiah, S., 2022. Green synthesis and characterization of zinc oxide nanoparticles using leaf extract of Thryallis glauca (Cav.) Kuntze and their role as antioxidant and antibacterial. Microsc. Res. Tech. https://doi.org/10.1002/JEMT.24132
  • 24. Dimkpa, C.O., Bindraban, P.S., 2016. Fortification of micronutrients for efficient agronomic production: a review. Agron. Sustain. Dev. 2016 361 36, 1–27. https://doi.org/10.1007/S13593-015-0346-6
  • 25. Djanaguiraman, M., Nair, R., Giraldo, J.P., Prasad, P.V.V., 2018. Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega 3, 14406–14416. https://doi.org/10.1021/acsomega.8b01894/asset/images/large/ao-2018-018949_0007.jpeg
  • 26. Drostkar, E., Talebi, R., Kanouni, H., 2016. Article Citation: Foliar application of Fe, Zn and NPK nano-fertilizers on seed yield and morphological traits in chickpea under rainfed condition. J. Res. Ecol. www.ecologyresearch.info J. Res. Ecol. An Int. Sci. Res. J. 4, 221–228.
  • 27. Eriksson, M., Strid, I., Hansson, P.A., 2012. Food losses in six Swedish retail stores: Wastage of fruit and vegetables in relation to quantities delivered. Resour. Conserv. Recycl. 68, 14–20. https://doi.org/10.1016/j.resconrec.2012.08.001
  • 28. Faisal, S., Jan, H., Shah, S.A., Shah, S., Khan, A., Akbar, M.T., Rizwan, M., Jan, F., Wajidullah, Akhtar, N., Khattak, A., Syed, S., 2021. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega 6, 9709–9722. https://doi.org/10.1021/acsomega.1c00310/asset/images/medium/ao1c00310_m014.gif
  • 29. Farooq, M., Hussain, M., Wahid, A., Siddique, K.H.M., 2012. Drought stress in plants: An overview. Plant Responses to Drought Stress From Morphol. to Mol. Featur. 9783642326530, 1–33. https://doi.org/10.1007/978-3-642-32653-0_1/COVER
  • 30. Fathi, A., Zahedi, M., Torabian, S., Khoshgoftar, A., 2017. Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. http://dx.doi.org/10.1080/01904167.2016.126241840, 1376–1385. https://doi.org/10.1080/01904167.2016.1262418
  • 31. Flowers, T.J., Colmer, T.D., 2015. Plant salt tolerance: adaptations in halophytes. Ann. Bot. 115, 327–331. https://doi.org/10.1093/AOB/MCU267
  • 32. Fraceto, L.F., Grillo, R., de Medeiros, G.A., Scognamiglio, V., Rea, G., Bartolucci, C., 2016. Nanotechnology in agriculture: Which innovation potential does it have? Front. Environ. Sci. 4, 20. https://doi.org/10.3389/FENVS.2016.00020/BIBTEX
  • 33. Gao, J., Xu, G., Qian, H., Liu, P., Zhao, P., Hu, Y., 2013. Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ. Pollut. 176, 63–70. https://doi.org/10.1016/J.ENVPOL.2013.01.027
  • 34. Ghafariyan, M.H., Malakouti, M.J., Dadpour, M.R., Stroeve, P., Mahmoudi, M., 2013. Effects of Magnetite Nanoparticles on Soybean Chlorophyll. Environ. Sci. Technol. 47, 10645–10652. https://doi.org/10.1021/ES402249B
  • 35. Gharaei, A., Amiri, M., Karami, R., Rostami, M., Keikha, M., Najafi Vafa, Z., Ghanbari, A., Sirousmehr, A.R., Khammari, I., Falahi, N., 2015. Effects of nano zinc and humic acid on quantitative and qualitative characteristics of savory (Satureja hortensis L.). Artic. J. Biosci. Biotechnol. https://doi.org/10.12692/ijb/6.3.124-136
  • 36. Ghasemi, M., Ghorban, N., Madani, H., Mobasser, H., Nouri, M., 2017. Effect of foliar application of zinc nano oxide on agronomic traits of two varieties of rice ( Oryza sativa L.) . Crop Res. 52, 195. https://doi.org/10.5958/2454-1761.2017.00017.1
  • 37. Govea-Alcaide, E., Masunaga, S.H., De Souza, A., Fajardo-Rosabal, L., Effenberger, F.B., Rossi, L.M., Jardim, R.F., 2016. Tracking iron oxide nanoparticles in plant organs using magnetic measurements. J. Nanoparticle Res. 18, 1–13. https://doi.org/10.1007/S11051-016-3610-Z/METRICS
  • 38. Guo, X.M., Trably, E., Latrille, E., Carrre, H., Steyer, J.P., 2010. Hydrogen production from agricultural waste by dark fermentation: A review. Int. J. Hydrogen Energy 35, 10660–10673. https://doi.org/10.1016/J.IJHYDENE.2010.03.008
  • 39. Gupta, A., Mishra, R., Rai, S., Bano, A., Pathak, N., Fujita, M., Kumar, M., Hasanuzzaman, M., 2022. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int. J. Mol. Sci. 2022, Vol. 23, Page 3741 23, 3741. https://doi.org/10.3390/IJMS23073741
  • 40. Ha, N.M.C., Nguyen, T.H., Wang, S.L., Nguyen, A.D., 2019. Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Res. Chem. Intermed. 45, 51–63. https://doi.org/10.1007/S11164-018-3630-7/METRICS
  • 41. Habibi, G., Aleyasin, Y., 2020. Green synthesis of Se nanoparticles and its effect on salt tolerance of barley plants. Int. J. Nano Dimens 11, 145–157.
  • 42. Hasanuzzaman, M., Nahar, K., Hossain, M.S., Mahmud, J. Al, Rahman, A., Inafuku, M., Oku, H., Fujita, M., 2017. Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int. J. Mol. Sci. 2017, Vol. 18, Page 200 18, 200. https://doi.org/10.3390/IJMS18010200
  • 43. Hatami, M., Kariman, K., Ghorbanpour, M., 2016. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Sci. Total Environ. 571, 275–291. https://doi.org/10.1016/J.SCITOTENV.2016.07.184
  • 44. He, X., Aker, W.G., Fu, P.P., Hwang, H.-M., 2015. Toxicity of engineered metal oxide nanomaterials mediated by nano–bio–eco–interactions: a review and perspective. Environ. Sci. Nano 2, 564–582. https://doi.org/10.1039/C5EN00094G
  • 45. Hotze, E.M., Phenrat, T., Lowry, G. V., 2010. Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. J. Environ. Qual. 39, 1909–1924. https://doi.org/10.2134/JEQ2009.0462
  • 46. Ikram, M., Raja, N.I., Javed, B., Mashwani, Z. ur R., Hussain, Mubashir, Hussain, Mujahid, Ehsan, M., Rafique, N., Malik, K., Sultana, T., Akram, A., 2020. Foliar applications of bio-fabricated selenium nanoparticles to improve the growth of wheat plants under drought stress. Green Process. Synth. 9, 706–714. https://doi.org/10.1515/GPS-2020-0067/machinereadablecitation/ris
  • 47.Jaberzadeh, A., Moaveni, P., Tohidi Moghadam, H.R., Zahedi, H., 2013. Influence of Bulk and Nanoparticles Titanium Foliar Application on some Agronomic Traits, Seed Gluten and Starch Contents of Wheat Subjected to Water Deficit Stress. Not. Bot. Horti Agrobot. Cluj-Napoca 41, 201–207. https://doi.org/10.15835/NBHA4119093
  • 48.Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., Dashti, S., 2016. Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agric. Slov. 107, 265–276. https://doi.org/10.14720/AAS.2016.107.2.01
  • 49.Jiang, M., Song, Y., Kanwar, M.K., Ahammed, G.J., Shao, S., Zhou, J., 2021. Phytonanotechnology applications in modern agriculture. J. Nanobiotechnology 19, 1–20. https://doi.org/10.1186/S12951-021-01176-W/TABLES/1
  • 50. Kabata-Pendias, A., 2010. Trace elements in soils and plants: Fourth edition. Trace Elem. Soils Plants, Fourth Ed. 1–520. https://doi.org/10.1201/B10158/trace-elements-soils-plants-alina-kabata-pendias
  • 51. Kacholi, D.S., Sahu, M., 2018. Levels and Health Risk Assessment of Heavy Metals in Soil, Water, and Vegetables of Dar es Salaam, Tanzania. J. Chem. 2018. https://doi.org/10.1155/2018/1402674
  • 52. Kale, S.K., Parishwad, G. V., Husainy, A.S.N., Patil, A.S., 2021. Emerging Agriculture Applications of Silver Nanoparticles. ES Food Agrofor. https://doi.org/10.30919/ESFAF438
  • 53. Kaningini, A.G., Nelwamondo, A.M., Azizi, S., Maaza, M., Mohale, K.C., 2022. Metal Nanoparticles in Agriculture: A Review of Possible Use. Coatings 2022, Vol. 12, Page 1586 12, 1586. https://doi.org/10.3390/COATINGS12101586
  • 54. Karthika, K.S., Rashmi, I., Parvathi, M.S., 2018. Biological functions, uptake and transport of essential nutrients in relation to plant growth. Plant Nutr. Abiotic Stress Toler. 1–49. https://doi.org/10.1007/978-981-10-9044-8_1/COVER
  • 55. Kates, R.W., Parris, T.M., Leiserowitz, A.A., 2012. What is Sustainable Development? Goals, Indicators, Values, and Practice. http://dx.doi.org/10.1080/00139157.2005.10524444 47, 8–21. https://doi.org/10.1080/00139157.2005.10524444
  • 56. Keller, A.A., Huang, Y., Nelson, J., 2018. Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS. J. Nanoparticle Res. 20, 1–13. https://doi.org/10.1007/S11051-018-4192-8/METRICS
  • 57. Khalid, M.F., Iqbal Khan, R., Jawaid, M.Z., Shafqat, W., Hussain, S., Ahmed, T., Rizwan, M., Ercisli, S., Pop, O.L., Alina Marc, R., 2022. Nanoparticles: The Plant Saviour under Abiotic Stresses. Nanomater. 2022, Vol. 12, Page 3915 12, 3915. https://doi.org/10.3390/NANO12213915
  • 58. Kiefer, J., Grabow, J., Kurland, H.D., Müller, F.A., 2015. Characterization of nanoparticles by solvent infrared spectroscopy. Anal. Chem. 87, 12313–12317. https://doi.org/10.1021/acs.analchem.5b03625/asset/images/large/AC-2015-036259_0006.jpeg
  • 59. Kowalska, H., Czajkowska, K., Cichowska, J., Lenart, A., 2017. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends Food Sci. Technol. 67, 150–159. https://doi.org/10.1016/J.TIFS.2017.06.016
  • 60. Kumar, P., Sharma, P.K., 2020. Soil Salinity and Food Security in India. Front. Sustain. Food Syst. 4, 174. https://doi.org/10.3389/FSUFS.2020.533781/BIBTEX
  • 61. Larue, C., Castillo-Michel, H., Sobanska, S., Trcera, N., Sorieul, S., Cécillon, L., Ouerdane, L., Legros, S., Sarret, G., 2014. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J. Hazard. Mater. 273, 17–26. https://doi.org/10.1016/J.JHAZMAT.2014.03.014
  • 62. Larue, C., Veronesi, G., Flank, A.M., Surble, S., Herlin-Boime, N., Carrière, M., 2012. Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. https://doi.org/10.1080/15287394.2012.689800 75, 722–734. https://doi.org/10.1080/15287394.2012.689800
  • 63. Li, G., Liu, W., Wang, Yuqing, Jia, F., Wang, Yuchen, Ma, Y., Gu, R., Lu, J., 2019. Functions and applications of bioactive peptides from corn gluten Meal. Adv. Food Nutr. Res. 87, 1–41. https://doi.org/10.1016/BS.AFNR.2018.07.001
  • 64. Lin, D., Xing, B., 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42, 5580–5585. https://doi.org/10.1021/ES800422X/SUPPL_FILE/ES800422X-FILE002.PDF
  • 65. Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., Sarmah, A.K., 2016. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci. Total Environ. 573, 1089–1102. https://doi.org/10.1016/J.SCITOTENV.2016.08.120
  • 66. Markus, J., Mathiyalagan, R., Kim, Y.J., Abbai, R., Singh, P., Ahn, S., Perez, Z.E.J., Hurh, J., Yang, D.C., 2016. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzyme Microb. Technol. 95, 85–93. https://doi.org/10.1016/J.ENZMICTEC.2016.08.018
  • 67. Martin-Ortigosa, S., Peterson, D.J., Valenstein, J.S., Lin, V.S.Y., Trewyn, B.G., Alexander Lyznik, L., Wang, K., 2014. Mesoporous silica nanoparticlemediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol. 164, 537–547. https://doi.org/10.1104/PP.113.233650
  • 68. Maswada, H.F., Djanaguiraman, M., Prasad, P.V.V., 2018. Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J. Agron. Crop Sci. 204, 577–587. https://doi.org/10.1111/JAC.12280
  • 69. Mejias, J.H., Salazar, F., Pérez Amaro, L., Hube, S., Rodriguez, M., Alfaro, M., 2021. Nanofertilizers: A cutting-edge approach to increase nitrogen use efficiency in grasslands. Front. Environ. Sci. 9, 52. https://doi.org/10.3389/fenvs.2021.635114/xml/nlm
  • 70. Mekdad, A.A.A., 2017. Response of Peanut to Nitrogen Fertilizer Levels and Foliar Zinc Spraying Rates in Newly Reclaimed Sandy Soils. J. Plant Prod. 8, 153–159. https://doi.org/10.21608/JPP.2017.39240
  • 71. Meychik, N.R., Nikolaeva, J.I., Yermakov, I.P., 2005. Ion exchange properties of the root cell walls isolated from the halophyte plants (Suaeda altissima L.) grown under conditions of different salinity. Plant Soil 277, 163–174. https://doi.org/10.1007/S11104-005-6806-Z/METRICS
  • 72. Morales-Díaz, A.B., Ortega-Ortíz, H., Juárez-Maldonado, A., Cadenas-Pliego, G., González-Morales, S., Benavides-Mendoza, A., 2017. Application of nanoelements in plant nutrition and its impact in ecosystems. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 013001. https://doi.org/10.1088/2043-6254/8/1/013001
  • 73. Morteza, E., Moaveni, P., Farahani, H.A., Kiyani, M., 2013. Study of photosynthetic pigments changes of maize (Zea mays L.) under nano Tio2 spraying at various growth stages. Springerplus 2, 1–5. https://doi.org/10.1186/2193-1801-2-247/TABLES/4
  • 74. Naderi, M.R., Danesh-Shahraki, A., 2013. Nanofertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci. 5, 2229–2232.
  • 75. Narayanan, K.B., Sakthivel, N., 2011. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid Interface Sci. 169, 59–79. https://doi.org/10.1016/J.CIS.2011.08.004
  • 76. Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., Khan, I., 2017. Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. J. Nanomater. 2017. https://doi.org/10.1155/2017/8510342
  • 77. Nazir, F., Fariduddin, Q., Khan, T.A., 2020. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 252, 126486. https://doi.org/10.1016/J.CHEMOSPHERE.2020.126486
  • 78. Nongbet, A., Mishra, A.K., Mohanta, Y.K., Mahanta, S., Ray, M.K., Khan, M., Baek, K.H., Chakrabartty, I., 2022. Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. Plants 2022, Vol. 11, Page 2587 11, 2587. https://doi.org/10.3390/PLANTS11192587
  • 79. Oberdörster, G., Oberdörster, E., Oberdörster, J., 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839. https://doi.org/10.1289/EHP.7339
  • 80. Ombodi, A., Saigusa, M., 2008. Broadcast application versus band application of polyolefin‐coated fertilizer on green peppers grown on andisol. http://dx.doi.org/10.1080/01904160009382116 23, 1485–1493. https://doi.org/10.1080/01904160009382116
  • 81. Omer, A.M., 2008. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 12, 2265–2300. https://doi.org/10.1016/J.RSER.2007.05.001
  • 82. Patil, S., Chandrasekaran, R., 2020. Biogenic nanoparticles: a comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 2020 181 18, 1–23. https://doi.org/10.1186/S43141-020-00081-3
  • 83. Pérez-Hernández, G., Vega-Poot, A., Pérez-Juárez, I., Camacho, J.M., Arés, O., Rejón, V., Peña, J.L., Oskam, G., 2012. Effect of a compact ZnO interlayer on the performance of ZnO-based dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 100, 21–26. https://doi.org/10.1016/J.SOLMAT.2011.05.012
  • 84. Pinedo-Guerrero, Z.H., Cadenas-Pliego, G., Ortega-Ortiz, H., González-Morales, S., Benavides-Mendoza, A., Valdés-Reyna, J., Juárez-Maldonado, A., 2020. Form of silica improves yield, fruit quality and antioxidant defense system of tomato plants under salt stress. Agric. 2020, Vol. 10, Page 367 10, 367. https://doi.org/10.3390/AGRICULTURE10090367
  • 85. Pîrvulescu, A., Sala, F., Boldea, M., 2015. Variation of chlorophyll content in sunflower under the influence of magnetic nanofluids. AIP Conf. Proc. 1648. https://doi.org/10.1063/1.4912904/589777
  • 86. Prasad, A.S., 2008. Zinc in human health: Effect of zinc on immune cells. Mol. Med. 14, 353–357. https://doi.org/10.2119/2008-00033.PRASAD/METRICS
  • 87. Prasad, T.N.V.K. V, Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T.S., Sajanlal, P.R., Pradeep, T., 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Taylor Fr. 35, 905–927. https://doi.org/10.1080/01904167.2012.663443
  • 88.Rafiq, S., Kaul, R., Sofi, S.A., Bashir, N., Nazir, F., Ahmad Nayik, G., 2018. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci. 17, 351–358. https://doi.org/10.1016/J.JSSAS.2016.07.006
  • 89. Rajput, V.D., Minkina, T.M., Behal, A., Sushkova, S.N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V.S., Purvis, W.O., Ghazaryan, K.A., Movsesyan, H.S., 2018. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environ. Nanotechnology, Monit. Manag. 9, 76–84. https://doi.org/10.1016/J.ENMM.2017.12.006
  • 90.Rajput, V.D., Singh, A., Minkina, T.M., Shende, S.S., Kumar, P., Verma, K.K., Bauer, T., Gorobtsova, O., Deneva, S., Sindireva, A., 2021. Potential Applications of Nanobiotechnology in Plant Nutrition and Protection for Sustainable Agriculture. Nanotechnol. Plant Growth Promot. Prot. 79–92. https://doi.org/10.1002/9781119745884.CH5
  • 91. Rakgotho, T., Ndou, N., Mulaudzi, T., Iwuoha, E., Mayedwa, N., Ajayi, R.F., 2022. Green-Synthesized Zinc Oxide Nanoparticles Mitigate Salt Stress in Sorghum bicolor. Agric. 12, 597. https://doi.org/10.3390/AGRICULTURE12050597/S1
  • 92.Raliya, R., Franke, C., Chavalmane, S., Nair, R., Reed, N., Biswas, P., 2016. Quantitative understanding of nanoparticle uptake in watermelon plants. Front. Plant Sci. 7, 1288. https://doi.org/10.3389/FPLS.2016.01288/XML/NLM
  • 93.Razavi, M., Salahinejad, E., Fahmy, M., Yazdimamaghani, M., Vashaee, D., Tayebi, L., 2015. Green chemical and biological synthesis of nanoparticles and their biomedical applications. Green Process. Nanotechnol. From Inorg. to Bioinspired Nanomater. 207–235. https://doi.org/10.1007/978-3-319-15461-9_7/COVER
  • 94. Ren, G., Hu, D., Cheng, E.W.C., Vargas-Reus, M.A., Reip, P., Allaker, R.P., 2009. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33, 587–590. https://doi.org/10.1016/J.IJANTIMICAG.2008.12.004
  • 95. Rezaei, M., Abbasi, H., n.d. Foliar application of nano-chelate and non-nanochelate of zinc on plant resistance physiological processes in cotton (Gossipium hirsutum L.). Iran. J. Plant Physiol. 4, 1137–1144.
  • 96. Riediker, M., Devlin, R.B., Griggs, T.R., Herbst, M.C., Bromberg, P.A., Williams, R.W., Cascio, W.E., 2004. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions. Part. Fibre Toxicol. 1, 1–10. https://doi.org/10.1186/1743-8977-1-2/FIGURES/3
  • 97.Roberts, A.G., Oparka, K.J., 2003. Plasmodesmata and the control of symplastic transport. Plant. Cell Environ. 26, 103–124. https://doi.org/10.1046/J.1365-3040.2003.00950.X
  • 98. Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., Mukherji, S., 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4, 707–716. https://doi.org/10.1016/J.ACTBIO.2007.11.006
  • 99. Saad-Allah, K.M., Ragab, G.A., 2020. Sulfur nanoparticles mediated improvement of salt tolerance in wheat relates to decreasing oxidative stress and regulating metabolic activity. Physiol. Mol. Biol. Plants 26, 2209–2223. https://doi.org/10.1007/S12298-020-00899-8/METRICS
  • 100. Sagar, N.A., Pareek, S., Sharma, S., Yahia, E.M., Lobo, M.G., 2018. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 17, 512–531. https://doi.org/10.1111/1541-4337.12330
  • 101. Saini, S., Kumar, P., Sharma, N.C., Sharma, N., Balachandar, D., 2021. Nano-enabled Zn fertilization against conventional Zn analogues in strawberry (Fragaria × ananassa Duch.). Sci. Hortic. (Amsterdam). 282, 110016. https://doi.org/10.1016/J.SCIENTA.2021.110016
  • 102. Sangeetha, J., Hospet, R., Thangadurai, D., Adetunji, C.O., Islam, S., Pujari, N., Al-Tawaha, A.R.M.S., 2021. Nanopesticides, Nanoherbicides, and Nanofertilizers: The Greener Aspects of Agrochemical Synthesis Using Nanotools and Nanoprocesses Toward Sustainable Agriculture. Handb. Nanomater. Nanocomposites Energy Environ. Appl. 1663–1677. https://doi.org/10.1007/978-3-030-36268-3_44
  • 103. Santiago, M., Pagay, V., Stroock, A.D., 2013. Impact of Electroviscosity on the Hydraulic Conductance of the Bordered Pit Membrane: A Theoretical Investigation. Plant Physiol. 163, 999–1011. https://doi.org/10.1104/PP.113.219774
  • 104. Saxena, S.C., Kaur, H., Verma, P., Petla, B.P., Andugula, V.R., Majee, M., 2013. Osmoprotectants: Potential for crop improvement under adverse conditions. Plant Acclim. to Environ. Stress 197–232. https://doi.org/10.1007/978-1-4614-5001-6_9/COVER
  • 105. Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J.L., Wiesner, M.R., 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants--Critical review. Nanotoxicology 10, 257–278. https://doi.org/10.3109/17435390.2015.1048326
  • 106. Sebastian, A., Nangia, A., Prasad, M.N.V., 2018. A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: Implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. J. Clean. Prod. 174, 355–366. https://doi.org/10.1016/J.JCLEPRO.2017.10.343
  • 107. Sharifi, R., Mohammadi, K., Rokhzadi, A., 2016. Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environ. Exp. Biol. 14, 151–156. https://doi.org/10.22364/eeb.14.21
  • 108. Sheiha, A.M., Abdelnour, S.A., Abd El-Hack, M.E., Khafaga, A.F., Metwally, K.A., Ajarem, J.S., Maodaa, S.N., Allam, A.A., El-Saadony, M.T., 2020. Effects of dietary biological or chemicalsynthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Anim., 10, 43010. https://doi.org/10.3390/ANI10030430
  • 109. Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., Liu, Y., Ma, J., Yu, L., Li, X., 2013. Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresour. Technol. 144, 80–85. https://doi.org/10.1016/J.biortech.2013.06.099
  • 110. Sheykhbaglou, R., Sedghi, M., Shishevan, M.t., Sharifi, R.S., 2010. Effects of nano-iron oxide particles on agronomic traits of soybean. Not. Sci. Biol. 2, 112–113. https://doi.org/10.15835/NSB224667
  • 111. Song, J.Y., Kim, B.S., 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 32, 79–84. https://doi.org/10.1007/S00449-008-0224-6/METRICS
  • 112. Stefanos Mourdikoudis, M. Pallares, R., K. Thanh, N.T., 2018. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871–12934. https://doi.org/10.1039/C8NR02278J
  • 113. studies, A.M.-P. journal of environmental, 2006, undefined, 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. pjoes.com 15, 523–530.
  • 114. Tarafdar, J.C., Raliya, R., Mahawar, H., Rathore, I., 2014. Development of Zinc Nanofertilizer to Enhance Crop Production in Pearl Millet (Pennisetum americanum). Agric. Res. 3, 257–262. https://doi.org/10.1007/S40003-014-0113-Y/METRICS
  • 115. Teja, A.S., Koh, P.Y., 2009. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45. https://doi.org/10.1016/J.PCRYSGROW.2008.08.003
  • 116. Thounaojam, T.C., Meetei, T.T., Devi, Y.B., Panda, S.K., Upadhyaya, H., 2021. Zinc oxide nanoparticles (ZnO-NPs): a promising nanoparticle in renovating plant science. Acta Physiol. Plant. 2021 4310 43, 1–21. https://doi.org/10.1007/S11738-021-03307-0
  • 117. Tiwari, J.N., Tiwari, R.N., Kim, K.S., 2012. Zerodimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57, 724–803. https://doi.org/10.1016/J.PMATSCI.2011.08.003
  • 118. Ullah, S., Adeel, M., Zain, M., Rizwan, M., Irshad, M.K., Jilani, G., Hameed, A., Khan, A., Arshad, M., Raza, A., Baluch, M.A., Rui, Y., 2020. Physiological and biochemical response of wheat (Triticum aestivum) to TiO2 nanoparticles in phosphorous amended soil: A full life cycle study. J. Environ. Manage. 263, 110365. https://doi.org/10.1016/J.JENVMAN.2020.110365
  • 119. Van Zelm, E., Zhang, Y., Testerink, C., 2020. salt tolerance mechanisms of plants. 71, 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005
  • 120. Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R.C., Tiwari, M., Sharma, N., Sahi, S. V., 2017. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. PPB 110, 118–127. https://doi.org/10.1016/J.PLAPHY.2016.09.004
  • 121. Verma, K.K., Song, X.P., Joshi, A., Tian, D.D., Rajput, V.D., Singh, M., Arora, J., Minkina, T., Li, Y.R., 2022. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials 12. https://doi.org/10.3390/NANO12010173
  • 122. Wahid, I., Rani, P., Kumari, S., Ahmad, R., Hussain, S.J., Alamri, S., Tripathy, N., Khan, M.I.R., 2022. Biosynthesized gold nanoparticles maintained nitrogen metabolism, nitric oxide synthesis, ions balance, and stabilizes the defense systems to improve salt stress tolerance in wheat. Chemosphere 287, 132142. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132142
  • 123. Wang, Z., Yue, L., Dhankher, O.P., Xing, B., 2020. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environ. Int. 142, 105831. https://doi.org/10.1016/J.ENVINT.2020.105831
  • 124. Wijngaard, H.H., Rößle, C., Brunton, N., 2009. A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chem. 116, 202–207. https://doi.org/10.1016/J.FOODCHEM.2009.02.033
  • 125. Wild, E., Jones, K.C., 2009. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ. Sci. Technol. 43, 5290–5294. https://doi.org/10.1021/es900065h/suppl_file/es900065h_si_001.pdf
  • 126. Yasmin, H., Naz, R., Nosheen, A., Hassan, M.N., Ilyas, N., Sajjad, M., Anjum, S., Gao, X., Geng, Z., 2020. Identification of New Biocontrol Agent against Charcoal Rot Disease Caused by Macrophomina phaseolina in Soybean (Glycine max L.). Sustain. 2020, Vol. 12, Page 6856 12, 6856. https://doi.org/10.3390/SU12176856
  • 127. Yazıcılar, B., Böke, F., Alaylı, A., Nadaroglu, H., Gedikli, S., Bezirganoglu, I., 2021. In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. Plant Cell Rep. 40, 29–42. https://doi.org/10.1007/S00299-020-02613-0/METRICS
  • 128. Younis, A.A., Khattab, H., Emam, M.M., 2020. Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. http://bp.ueb.cas.cz/doi/10.32615/bp.2020.030.html 64, 343–352. https://doi.org/10.32615/BP.2020.030
  • 129. Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., Xia, G., 2020. How Plant Hormones Mediate Salt Stress Responses. Trends Plant Sci. 25, 1117–1130. https://doi.org/10.1016/J.TPLANTS.2020.06.008
  • 130. Zahedi, S.M., Hosseini, M.S., Daneshvar Hakimi Meybodi, N., Peijnenburg, W., 2021. Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. J. Sci. Food Agric. 101, 5202–5213. https://doi.org/10.1002/JSFA.11167
  • 131. Zhang, Q., Ying, Y., Ping, J., 2022. Recent Advances in Plant Nanoscience. Adv. Sci. (Weinheim, Baden-Wurttemberg, Ger. 9. https://doi.org/10.1002/ADVS.202103414
  • 132. Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z., Ji, R., 2020. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. J. Agric. Food Chem. 68, 1935–1947. https://doi.org/10.1021/ACS.JAFC.9B06615
  • 133. Zhuang, H., Tang, N., Yuan, Y., 2013. Purification and identification of antioxidant peptides from corn gluten meal. J. Funct. Foods 5, 1810–1821. https://doi.org/10.1016/J.JFF.2013.08.013
  • 134. Zulfiqar, F., Ashraf, M., 2021. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol. Biochem. 160, 257–268. https://doi.org/10.1016/J.PLAPHY.2021.01.028
  • 135. Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N.A., Munné-Bosch, S., 2019. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 289, 110270. https://doi.org/10.1016/J.PLANTSCI.2019.110270
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b4afda4-4cea-4e62-afe1-ae5965f6c961
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.