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The improved version of the alpha max plus beta min square-rooting algorithm and its 
realization in the Field Programmable Gate Array (FPGA) are presented.  The algorithm 
computes the square root to calculate the approximate magnitude of a complex sample. It is 
especially useful for pipelined calculations in the DSP. The improved version allows to 
reduce the peak error from about  4% to 0.33%. This is attained by determination of the  
approximate ratio of arguments and adequate selection of algorithm coefficients. Four 
approximation regions are used and hence four sets of coefficients. Also a Xilinx FPGA 
implementation for 12-bit sign magnitude  numbers is shown. 
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1. INTRODUCTION 
 
 In many digital signal processing applications the computation of the square root is a 
common task. In the general purpose computers the square root is usually computed 
using floating-point arithmetic library function or an arithmetic coprocessor. The IEEE 
floating-point standard assigns square-rooting to the group of basic arithmetic operations 
along with the usual four. Like division the square rooting can be can be formulated as a 
sequence of shift and subtract operations. This leads to the well-known non-restoring and 
restoring binary shift/subtract algorithms [1]. The other approaches may use the Newton-
Raphson iteration or the CORDIC algorithm [1]. The square-rooting problem was 
considered in several works[2 - 9]. The common feature of these algorithms is the need 
to perform certain number of steps or iterations but calculation of the square root in 
digital signal processing may impose specific requirements. First the fixed-point 
arithmetic is commonly used and computations are performed using hardware, secondly 
the dynamic range of the signal usually does not exceed 16 bits. The main parameter of 
the square root algorithm along to the execution time or attainable pipelining rate is the 
peak absolute error for signals from the given dynamic range. The need to perform 
iterations  increases the size of the square-rooter and may introduce the considerable 
delay. If radicand is a sum two-squares, the alpha max plus beta min algorithm can be 
applied. 
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2. BASIC ALPHA MAX PLUS BETA MIN ALGORITHM 
 

The basic form of this algorithm was presented by Filip [10]. The problem is to 
compute 22 QPR  where P and Q  represent the quadrature pair, i.e., the real 
and imaginary part of a complex number. Define 

 QPx ,max           (1) 
 QPy ,min            (2) 

This transformation  rotates the complex number jQPz   in such way that 
the number obtained after rotation has the argument θ limited to the interval 
[ 0 , 4/ ]. Thus 

22 yxR  , 4/0          (3) 
We want to approximate R as  

byaxR +=ˆ ,           (4) 
It can be shown that  

 sincosˆ baR  .         (5) 
If for certain x, y and a, b we have RR=ˆ  then  

byaxyx +=+ 22          (6) 
Regarding that tan   = y/x , we obtain 

 sincos1 ba  ,         (7) 
That means, in general, that we have to approximate the constant value equal to 1 
by a sum of two products. The approximation error is equal to  

e() = 1 - acos() + bsin()         (8) 
This approximation is shown in Fig. 1. 

In order to obtain the equiripple approximation we have to equalize the 
approximation error. We have 

e(0)=e(max)=e(0).         (9) 
Assuming that 

2
0

max


            (10) 

we obtain  for  ( 00   ) 

 2/sec1
2

0
a           (11) 

 4/tan2 0b            (12) 
 4/tan 0

2
max e          (13) 
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Fig. 1. Approximation using one region 

 

For 0 = /4, we receive   9604.0
8/sec1

2






a ,   3978.016/tan2  b  

and   039566.016/tan 2
max  e . We see that the error is about %95.3± that, 

for example, for 12-bit signed numbers gives the maximum error from the interval  
[-80.8, 80.8]. In order to reduce this error, two regions of approximation can be 
introduced. 

If we divide the range of approximation into two regions : Region I ( 00 θθ  ) 
and  Region II ( 40 π/θθ  ), then 

RI = a1x + b1y          (14) 
RII = a2x + b2y          (15) 

( a1 and b1 for the Region I can be obtained using (11)-(12)) with 0 = /8. 

 
Fig. 2. Approximation using two regions 
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  0

2
max 44

1tan 
e         (18) 







 

42
1

0max


           (19) 

Using (11)-(13) for 0 = /8 and max = /16, we get 
a1 = 0.9902 , b1 = 0.196983,   00970322

1 ./tanemax  . 

 
Fig. 3. Approximation error for the case of two approximation regions 

 
We see that the error is about %.97010  that, for example, for 12-bit signed 

numbers gives the maximum error belonging to [-19.85, 19.85].  
 Using (16) and (17) we may calculate a2 = 0.839535 , b2 = 0.560960 and 

  0097.04/(25.0tan 0
2

2max  e . 
 

3. GENERALIZED ALPHA MAX PLUS BETA MIN ALGORITHM 
 
 In Section 2 two versions of the algorithm have been presented. However, in 
certain situations the greater accuracy may be required and it can be attained by 
increasing the number of regions of approximation. For the general case we shall 
adopt the denotations: 

s - the start of the approximation region,  
e - the end of  the region. 

In order to obtain equal absolute values of the approximation error for both ends 
of the region and at a certain point θmax within the region the following equations 
have to be fulfilled 

| e(θs)|  = | e(θmax) | ,         (20) 
| e(θe)|  = | e(θmax) | .         (21) 

It is advantageous to choose θmax,  as the midpoint of the region.  
 Using (8) we receive  

maxmax sincos1sincos1   baba ee ,   (22) 

maxmax sincos1sincos1   baba ss .    (23) 
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After solving these equations we get 
   














se

ees
ea
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max ,  (24)  

and  

 
 

se

esab



sinsin
coscos




  .        (25) 

The absolute error emax can be expressed as 
ssee babae  sincos1sincos1max     (26) 

As an example we shall use four approximation regions 

 
Fig. 4. Approximation using four approximation regions 

 
For four approximation regions we obtain 

R1 = [0, π/16), R2 = [π/16, π/8], R3 = [π/8, 3π/16], R4 = [3π/16, π/4]. 
For these regions we obtain the following coefficients 

        a1 = 0.997587,  b1 = 0.098254 
        a2 =  0.959250,  b2 = 0.290985 
        a3 = 0.884050,  b3 = 0.472534 
        a4 = 0.774576,  b4 = 0.635924 
 In Table1 the obtained approximation results are shown. We may observe that 
the maximum approximation error . We may observe that the maximum error has 
been reduced to 0.38% for r = Min/Max = 0.43 that means that the error has been 
reduced to one tenth of its value when only one region was used and to about one 
third for two regions. 
Example 1. Compute 22 QP  for P=2000 and Q = 1500. 

We have 250015002000 22  . In this case r = Q/P = 0.75 and we have to 
apply the fourth group of the coefficients 

a4 = 0.774576,   b4 = 0.635924. 

0382503388695315215491500635924020007745760 .....R   
Hence the relative approximation error is equal to (2503.038-2500)/2500 = 

0.00112, that is in good agreement with the respective error in Table 1. 
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Table 1. Square-root approximation using four regions 
 

tan(P/Q) Relation(A/Float) Error[%]  tan(P/Q) Relation(A/Float) Error[%] 
0.01 0.998520 +0.148038  0.51 1.002228 -0.222761 
0.02 0.999352 +0.064777  0.52 1.002349 -0.234887 
0.03 1.000085 -0.008468  0.53 1.002407 -0.240729 
0.04 1.000717 -0.071691  0.54 1.002404 -0.240438 
0.05 1.001249 -0.124892  0.55 1.002342 -0.234167 
0.06 1.001681 -0.168083  0.56 1.002221 -0.222065 
0.07 1.002013 -0.201285  0.57 1.002043 -0.204282 
0.08 1.002245 -0.224525  0.58 1.001810 -0.180968 
0.09 1.002378 -0.237842  0.59 1.001523 -0.152270 
0.10 1.002413 -0.241280  0.60 1.001183 -0.118336 
0.11 1.002349 -0.234896  0.61 1.000793 -0.079311 
0.12 1.002188 -0.218752  0.62 1.000353 -0.035338 
0.13 1.001929 -0.192919  0.63 0.999866 +0.013438 
0.14 1.001575 -0.157476  0.64 0.999331 +0.066877 
0.15 1.001125 -0.112509  0.65 0.998752 +0.124840 
0.16 1.000581 -0.058114  0.66 0.997013 +0.298742 
0.17 0.999944 +0.005610  0.67 0.997709 +0.229088 
0.18 0.999214 +0.078552  0.68 0.998352 +0.164806 
0.19 0.996706 +0.329390  0.69 0.998942 +0.105766 
0.20 0.997689 +0.231113  0.70 0.999482 +0.051838 
0.21 0.998576 +0.142420  0.71 0.999971 +0.002895 
0.22 0.999368 +0.063224  0.72 1.000412 -0.041188 
0.23 1.000066 -0.006568  0.73 1.000805 -0.080537 
0.24 1.000671 -0.067055  0.74 1.001153 -0.115274 
0.25 1.001183 -0.118342  0.75 1.001455 -0.145520 
0.26 1.001605 -0.160542  0.76 1.001714 -0.171395 
0.27 1.001938 -0.193770  0.77 1.001930 -0.193016 
0.28 1.002181 -0.218150  0.78 1.002105 -0.210499 
0.29 1.002338 -0.233809  0.79 1.002240 -0.223959 
0.30 1.002409 -0.240879  0.80 1.002335 -0.233507 
0.31 1.002395 -0.239497  0.81 1.002393 -0.239254 
0.32 1.002298 -0.229803  0.82 1.002413 -0.241308 
0.33 1.002119 -0.211942  0.83 1.002398 -0.239775 
0.34 1.001861 -0.186062  0.84 1.002348 -0.234761 
0.35 1.001523 -0.152315  0.85 1.002264 -0.226366 
0.36 1.001109 -0.110853  0.86 1.002147 -0.214693 
0.37 1.000618 -0.061835  0.87 1.001998 -0.199840 
0.38 1.000054 -0.005419  0.88 1.001819 -0.181902 
0.39 0.999418 +0.058234  0.89 1.001610 -0.160975 
0.40 0.998710 +0.128962  0.90 1.001372 -0.137152 
0.41 0.997934 +0.206600  0.91 1.001105 -0.110523 
0.42 0.997090 +0.290982  0.92 1.000812 -0.081178 
0.43 0.996181 +0.381943  0.93 1.000492 -0.049202 
0.44 0.999492 +0.050806  0.94 1.000147 -0.014681 
0.45 1.000095 -0.009547  0.95 0.999777 +0.022303 
0.46 1.000626 -0.062559  0.96 0.999383 +0.061667 
0.47 1.001084 -0.108380  0.97 0.998967 +0.103333 
0.48 1.001472 -0.147160  0.98 0.998528 +0.147223 
0.49 1.001790 -0.179049  0.99 0.998067 +0.193262 
0.50 1.002042 -0.204199  1.00 0.997586 +0.241375 
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4. SQUARE ROOTER ARCHITECTURE AND FPGA REALIZATION 
 

The hardware implementation of the algorithm comprises the determination of 
the greater and smaller value of the pair (P, Q). These values are termed Max and 
Min. Once they are known, their approximate quotient is computed in order to 
apply the proper pair of  and  coefficients. Subsequently these coefficients are 
multiplied by Max and Min, respectively and the sum of products is calculated. The 
general scheme is depicted in Fig. 5.  

 
 

Fig. 5. The general scheme of the square rooter using four approximation regions 
 
 In Fig. 6 a detailed scheme of the square rooter implemented in the Xilinx 
FPGA is shown. In the first an binary adder is used that computes P – Q. If the 
result is nonnegative then Max = P and Min = Q, for the negative result we have 
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the reverse order. The sign of the sum is used to control two multiplexers that 
select Min and Max values. The ROM1 computes the approximate reciprocal of 
Max using six most significant bits of its representation. Subsequently MULT1 
computes the approximate quotient r = {Min/Max}.Only six msb’s of Min are used. 
The obtained approximate value of r is used to detect one of four regions of 
approximation. The 6 msb’s of the product are used to select by the look-up the 
proper pair of  and . Once they are known the multiplications using MULT2 and 
MULT3 and final addition using the binary adder BA2 can be performed. 
 

 
 

Fig. 6. The scheme of the FPGA  square rooter that uses four approximation regions 
 

The square rooter presented in Fig. 6 has been synthesized using Xilinx [11] 
design environment. Below we give the FPGA synthesis results.  



FPGA realization of an improved alpha max plus beta min algorithm 
 
 

159 

Device utilization summary: 
--------------------------- 
Selected Device : 6vcx75tff484-2  
Slice Logic Utilization:  
 Number of Slice Registers:   33  out of   93120     0%   
 Number of Slice LUTs:       105  out of   46560     0%   
 Number used as Logic:           105  out of   46560     0%   
 
Slice Logic Distribution:  
 Number of LUT Flip Flop pairs used:    127 
 Number with an unused Flip Flop:      94   out of    127    74% 
 Number with an unused LUT:             22   out of    127    17% 
 Number of fully used LUT-FF pairs:   11  out of     127     8%  
 Number of unique control sets:             1 
 
IO Utilization:  
 Number of IOs:                                   34 
 Number of bonded IOBs:                    34  out of    240    14%   
 
Specific Feature Utilization: 
 Number of BUFG/BUFGCTRLs:        1  out of     32     3%   
 Number of DSP48E1s:                         2  out of    288    0% 
 
 
Timing Summary: 
--------------- 
Speed Grade: -2 
 
 Minimum period: 11.953ns (maximum frequency: 83.659MHz) 
 Minimum input arrival time before clock: 10.073ns 
 Maximum output required time after clock: 0.659ns 

 
5. SUMMARY 

 
The paper presents an improved version of the alpha max beta min algorithm 

that allows to compute the square of a complex number without division and 
without iterations. Up to date there existed two versions of the algorithm. The first 
one allowed to compute the square root with the error not exceeding 3.95%, 
whereas the second version permits to reduce the error to about 1%. The presented 
improved version  attains about 0.33%. Also an Xilinx FPGA for 12-bit signed 
numbers implementation is shown. 
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