
POZNAN UNIVE RSIT Y OF TE CHNOLOGY ACADE MIC JOURNALS
No 80 Electrical Engineering 2014

__
* Gdansk University of Technology.

Maciej CZYŻAK*
Robert SMYK*

FPGA REALIZATION OF AN IMPROVED
ALPHA MAX PLUS BETA MIN ALGORITHM

The improved version of the alpha max plus beta min square-rooting algorithm and its
realization in the Field Programmable Gate Array (FPGA) are presented. The algorithm
computes the square root to calculate the approximate magnitude of a complex sample. It is
especially useful for pipelined calculations in the DSP. The improved version allows to
reduce the peak error from about 4% to 0.33%. This is attained by determination of the
approximate ratio of arguments and adequate selection of algorithm coefficients. Four
approximation regions are used and hence four sets of coefficients. Also a Xilinx FPGA
implementation for 12-bit sign magnitude numbers is shown.

KEYWORDS: square root computation, alpha max plus beta min algorithm, field-
programmable gate array

1. INTRODUCTION

 In many digital signal processing applications the computation of the square root is a
common task. In the general purpose computers the square root is usually computed
using floating-point arithmetic library function or an arithmetic coprocessor. The IEEE
floating-point standard assigns square-rooting to the group of basic arithmetic operations
along with the usual four. Like division the square rooting can be can be formulated as a
sequence of shift and subtract operations. This leads to the well-known non-restoring and
restoring binary shift/subtract algorithms [1]. The other approaches may use the Newton-
Raphson iteration or the CORDIC algorithm [1]. The square-rooting problem was
considered in several works[2 - 9]. The common feature of these algorithms is the need
to perform certain number of steps or iterations but calculation of the square root in
digital signal processing may impose specific requirements. First the fixed-point
arithmetic is commonly used and computations are performed using hardware, secondly
the dynamic range of the signal usually does not exceed 16 bits. The main parameter of
the square root algorithm along to the execution time or attainable pipelining rate is the
peak absolute error for signals from the given dynamic range. The need to perform
iterations increases the size of the square-rooter and may introduce the considerable
delay. If radicand is a sum two-squares, the alpha max plus beta min algorithm can be
applied.

Maciej Czyżak, Robert Smyk

152

2. BASIC ALPHA MAX PLUS BETA MIN ALGORITHM

The basic form of this algorithm was presented by Filip [10]. The problem is to
compute 22 QPR where P and Q represent the quadrature pair, i.e., the real
and imaginary part of a complex number. Define

 QPx ,max (1)
 QPy ,min (2)

This transformation rotates the complex number jQPz in such way that
the number obtained after rotation has the argument θ limited to the interval
[0 , 4/]. Thus

22 yxR , 4/0 (3)
We want to approximate R as

byaxR +=ˆ , (4)
It can be shown that

 sincosˆ baR . (5)
If for certain x, y and a, b we have RR=ˆ then

byaxyx +=+ 22 (6)
Regarding that tan = y/x , we obtain

 sincos1 ba , (7)
That means, in general, that we have to approximate the constant value equal to 1
by a sum of two products. The approximation error is equal to

e() = 1 - acos() + bsin() (8)
This approximation is shown in Fig. 1.

In order to obtain the equiripple approximation we have to equalize the
approximation error. We have

e(0)=e(max)=e(0). (9)
Assuming that

2
0

max

 (10)

we obtain for (00)

 2/sec1
2

0
a (11)

 4/tan2 0b (12)
 4/tan 0

2
max e (13)

FPGA realization of an improved alpha max plus beta min algorithm

153

Fig. 1. Approximation using one region

For 0 = /4, we receive 9604.0
8/sec1

2

a , 3978.016/tan2 b

and 039566.016/tan 2
max e . We see that the error is about %95.3± that,

for example, for 12-bit signed numbers gives the maximum error from the interval
[-80.8, 80.8]. In order to reduce this error, two regions of approximation can be
introduced.

If we divide the range of approximation into two regions : Region I (00 θθ)
and Region II (40 π/θθ), then

RI = a1x + b1y (14)
RII = a2x + b2y (15)

(a1 and b1 for the Region I can be obtained using (11)-(12)) with 0 = /8.

Fig. 2. Approximation using two regions

We obtain for Region II

00

0

4
cos

42
1sin2

sin212

a (16)

00

0

4
cos

42
1sin2

1cos22

b (17)

Maciej Czyżak, Robert Smyk

154

 0

2
max 44

1tan
e (18)

42
1

0max

 (19)

Using (11)-(13) for 0 = /8 and max = /16, we get
a1 = 0.9902 , b1 = 0.196983, 00970322

1 ./tanemax .

Fig. 3. Approximation error for the case of two approximation regions

We see that the error is about %.97010 that, for example, for 12-bit signed

numbers gives the maximum error belonging to [-19.85, 19.85].
 Using (16) and (17) we may calculate a2 = 0.839535 , b2 = 0.560960 and

 0097.04/(25.0tan 0
2

2max e .

3. GENERALIZED ALPHA MAX PLUS BETA MIN ALGORITHM

 In Section 2 two versions of the algorithm have been presented. However, in
certain situations the greater accuracy may be required and it can be attained by
increasing the number of regions of approximation. For the general case we shall
adopt the denotations:

s - the start of the approximation region,
e - the end of the region.

In order to obtain equal absolute values of the approximation error for both ends
of the region and at a certain point θmax within the region the following equations
have to be fulfilled

| e(θs)| = | e(θmax) | , (20)
| e(θe)| = | e(θmax) | . (21)

It is advantageous to choose θmax, as the midpoint of the region.
 Using (8) we receive

maxmax sincos1sincos1 baba ee , (22)

maxmax sincos1sincos1 baba ss . (23)

FPGA realization of an improved alpha max plus beta min algorithm

155

After solving these equations we get

se

ees
ea

sinsin

sinsincoscos
coscos

2
1 max

max , (24)

and

se

esab

sinsin
coscos

 . (25)

The absolute error emax can be expressed as
ssee babae sincos1sincos1max (26)

As an example we shall use four approximation regions

Fig. 4. Approximation using four approximation regions

For four approximation regions we obtain

R1 = [0, π/16), R2 = [π/16, π/8], R3 = [π/8, 3π/16], R4 = [3π/16, π/4].
For these regions we obtain the following coefficients

 a1 = 0.997587, b1 = 0.098254
 a2 = 0.959250, b2 = 0.290985
 a3 = 0.884050, b3 = 0.472534
 a4 = 0.774576, b4 = 0.635924
 In Table1 the obtained approximation results are shown. We may observe that
the maximum approximation error . We may observe that the maximum error has
been reduced to 0.38% for r = Min/Max = 0.43 that means that the error has been
reduced to one tenth of its value when only one region was used and to about one
third for two regions.
Example 1. Compute 22 QP for P=2000 and Q = 1500.

We have 250015002000 22 . In this case r = Q/P = 0.75 and we have to
apply the fourth group of the coefficients

a4 = 0.774576, b4 = 0.635924.

0382503388695315215491500635924020007745760R
Hence the relative approximation error is equal to (2503.038-2500)/2500 =

0.00112, that is in good agreement with the respective error in Table 1.

Maciej Czyżak, Robert Smyk

156

Table 1. Square-root approximation using four regions

tan(P/Q) Relation(A/Float) Error[%] tan(P/Q) Relation(A/Float) Error[%]
0.01 0.998520 +0.148038 0.51 1.002228 -0.222761
0.02 0.999352 +0.064777 0.52 1.002349 -0.234887
0.03 1.000085 -0.008468 0.53 1.002407 -0.240729
0.04 1.000717 -0.071691 0.54 1.002404 -0.240438
0.05 1.001249 -0.124892 0.55 1.002342 -0.234167
0.06 1.001681 -0.168083 0.56 1.002221 -0.222065
0.07 1.002013 -0.201285 0.57 1.002043 -0.204282
0.08 1.002245 -0.224525 0.58 1.001810 -0.180968
0.09 1.002378 -0.237842 0.59 1.001523 -0.152270
0.10 1.002413 -0.241280 0.60 1.001183 -0.118336
0.11 1.002349 -0.234896 0.61 1.000793 -0.079311
0.12 1.002188 -0.218752 0.62 1.000353 -0.035338
0.13 1.001929 -0.192919 0.63 0.999866 +0.013438
0.14 1.001575 -0.157476 0.64 0.999331 +0.066877
0.15 1.001125 -0.112509 0.65 0.998752 +0.124840
0.16 1.000581 -0.058114 0.66 0.997013 +0.298742
0.17 0.999944 +0.005610 0.67 0.997709 +0.229088
0.18 0.999214 +0.078552 0.68 0.998352 +0.164806
0.19 0.996706 +0.329390 0.69 0.998942 +0.105766
0.20 0.997689 +0.231113 0.70 0.999482 +0.051838
0.21 0.998576 +0.142420 0.71 0.999971 +0.002895
0.22 0.999368 +0.063224 0.72 1.000412 -0.041188
0.23 1.000066 -0.006568 0.73 1.000805 -0.080537
0.24 1.000671 -0.067055 0.74 1.001153 -0.115274
0.25 1.001183 -0.118342 0.75 1.001455 -0.145520
0.26 1.001605 -0.160542 0.76 1.001714 -0.171395
0.27 1.001938 -0.193770 0.77 1.001930 -0.193016
0.28 1.002181 -0.218150 0.78 1.002105 -0.210499
0.29 1.002338 -0.233809 0.79 1.002240 -0.223959
0.30 1.002409 -0.240879 0.80 1.002335 -0.233507
0.31 1.002395 -0.239497 0.81 1.002393 -0.239254
0.32 1.002298 -0.229803 0.82 1.002413 -0.241308
0.33 1.002119 -0.211942 0.83 1.002398 -0.239775
0.34 1.001861 -0.186062 0.84 1.002348 -0.234761
0.35 1.001523 -0.152315 0.85 1.002264 -0.226366
0.36 1.001109 -0.110853 0.86 1.002147 -0.214693
0.37 1.000618 -0.061835 0.87 1.001998 -0.199840
0.38 1.000054 -0.005419 0.88 1.001819 -0.181902
0.39 0.999418 +0.058234 0.89 1.001610 -0.160975
0.40 0.998710 +0.128962 0.90 1.001372 -0.137152
0.41 0.997934 +0.206600 0.91 1.001105 -0.110523
0.42 0.997090 +0.290982 0.92 1.000812 -0.081178
0.43 0.996181 +0.381943 0.93 1.000492 -0.049202
0.44 0.999492 +0.050806 0.94 1.000147 -0.014681
0.45 1.000095 -0.009547 0.95 0.999777 +0.022303
0.46 1.000626 -0.062559 0.96 0.999383 +0.061667
0.47 1.001084 -0.108380 0.97 0.998967 +0.103333
0.48 1.001472 -0.147160 0.98 0.998528 +0.147223
0.49 1.001790 -0.179049 0.99 0.998067 +0.193262
0.50 1.002042 -0.204199 1.00 0.997586 +0.241375

FPGA realization of an improved alpha max plus beta min algorithm

157

4. SQUARE ROOTER ARCHITECTURE AND FPGA REALIZATION

The hardware implementation of the algorithm comprises the determination of
the greater and smaller value of the pair (P, Q). These values are termed Max and
Min. Once they are known, their approximate quotient is computed in order to
apply the proper pair of and coefficients. Subsequently these coefficients are
multiplied by Max and Min, respectively and the sum of products is calculated. The
general scheme is depicted in Fig. 5.

Fig. 5. The general scheme of the square rooter using four approximation regions

 In Fig. 6 a detailed scheme of the square rooter implemented in the Xilinx
FPGA is shown. In the first an binary adder is used that computes P – Q. If the
result is nonnegative then Max = P and Min = Q, for the negative result we have

Maciej Czyżak, Robert Smyk

158

the reverse order. The sign of the sum is used to control two multiplexers that
select Min and Max values. The ROM1 computes the approximate reciprocal of
Max using six most significant bits of its representation. Subsequently MULT1
computes the approximate quotient r = {Min/Max}.Only six msb’s of Min are used.
The obtained approximate value of r is used to detect one of four regions of
approximation. The 6 msb’s of the product are used to select by the look-up the
proper pair of and . Once they are known the multiplications using MULT2 and
MULT3 and final addition using the binary adder BA2 can be performed.

Fig. 6. The scheme of the FPGA square rooter that uses four approximation regions

The square rooter presented in Fig. 6 has been synthesized using Xilinx [11]
design environment. Below we give the FPGA synthesis results.

FPGA realization of an improved alpha max plus beta min algorithm

159

Device utilization summary:

Selected Device : 6vcx75tff484-2
Slice Logic Utilization:
 Number of Slice Registers: 33 out of 93120 0%
 Number of Slice LUTs: 105 out of 46560 0%
 Number used as Logic: 105 out of 46560 0%

Slice Logic Distribution:
 Number of LUT Flip Flop pairs used: 127
 Number with an unused Flip Flop: 94 out of 127 74%
 Number with an unused LUT: 22 out of 127 17%
 Number of fully used LUT-FF pairs: 11 out of 127 8%
 Number of unique control sets: 1

IO Utilization:
 Number of IOs: 34
 Number of bonded IOBs: 34 out of 240 14%

Specific Feature Utilization:
 Number of BUFG/BUFGCTRLs: 1 out of 32 3%
 Number of DSP48E1s: 2 out of 288 0%

Timing Summary:

Speed Grade: -2

 Minimum period: 11.953ns (maximum frequency: 83.659MHz)
 Minimum input arrival time before clock: 10.073ns
 Maximum output required time after clock: 0.659ns

5. SUMMARY

The paper presents an improved version of the alpha max beta min algorithm

that allows to compute the square of a complex number without division and
without iterations. Up to date there existed two versions of the algorithm. The first
one allowed to compute the square root with the error not exceeding 3.95%,
whereas the second version permits to reduce the error to about 1%. The presented
improved version attains about 0.33%. Also an Xilinx FPGA for 12-bit signed
numbers implementation is shown.

Maciej Czyżak, Robert Smyk

160

REFERENCES

[1] Parhami B., Computer Arithmetic: Algorithms and Hardware Designs, Oxford
University Press, 2000.

[2] Zurawski J.H.P, Gosling J.B.: Design of a high-speed root, multiply and divide unit,
IEEE Trans. on Computers, Volume.34, Number 1, pp. 13-23, 1985.

[3] Majerski S.: Square-root algorithms for high-speed digital circuits, IEEE Trans. on
Computers, Volume 34, Number 8, pp. 1016-1024, 1985.

[4] Hashemian R.: Square rooting algorithms for integer and floating-point numbers.
IEEE Trans. on Computers, Volume 39, Number 8, pp. 1025-1029, 990.

[5] Montushi P., Mezzalama M.: Survey of square-rooting algorithms. Proc. IEEE, pt.
E, Volume 137, pp.31-40, 1990.

[6] Ciminera L., Montushi P.: High-radix square rooting, IEEE Trans. on Computers,
Volume 39, Number 10, pp. 1220-1231, 1990.

[7] Ercegowac M.D., Lang T.: Division and square-root: Digit recurrence algorithms
and implementations, Kluwer 1994.

[8] Sutikno T.: An efficient implementation of the nonrestoring square root algorithm in
gate level, International Jourmnal of Computer Theory and Engineering, Volume 3,
Number 1, pp. 46-51, 2011.

[9] Sutikno, Jidin A.Z., Jidin A., Idris N.R.N.: Simplified VHDL Coding of modified
nonrestoring square root calculator, International Journal of Reconfigurable and
Embedded Systems, Volume 1, Number.1, pp.37-42, 2012.

[10] Filip A.E.: Linear approximations to 22 yx having equiripple characteristics.
IEEE Trans. on Audio and Electroacoustics, Volume AU-21, Number 6, pp. 554-
556, 1973.

[11] Xilinx, Virtex-7, www.xilinx.com.

