PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A hybrid wavelet–machine learning model for qanat water flow prediction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In many parts of semiarid and arid regions, qanats are the leading supplier of water demand for agricultural and drinking usage. Qanat is an ancient collecting water system, and qanat water flow (QWF) varies in different seasons and decreases gradually by pumping groundwater wells. The present research utilized a set of supervised machine learning (ML) models to predict the QWF in the Chaghlondi Aquifer in Iran using monthly intervals of 14 years (2007–2021). The wavelet transform (WT) technique was also applied to enhance the QWF prediction quality of ML models for three lead months utilizing QWF, precipitation, evapotranspiration, temperature and GWL signal datasets as input. The five widely used ML models, i.e., artificial neural network (ANN), adaptive neuro-fuzzy inference system, group method of data handling (GMDH), gene expression programming and least square support vector machine, were applied and then compared with their hybrid wavelet models. To assess the performance of the models, the following four evaluation criteria were employed: correlation coefficient (R), Nash–Sutcliffe efficiency (NSE), root means squared error (RMSE) and mean absolute error (MAE). The outcomes showed that the hybrid-wavelet ML considerably improved the standalone model performance. The best QWF predictions for a one-month ahead QWF prediction were acquired from the WT-GMDH model results from input scenario 3 with RMSE, MAE, R and NSE equal to 14.46, 10.78, 0.93 and 0.85, respectively. In addition, the result of this study indicates that ML's performance was improved by using wavelet transform for two and three months ahead of QWF predictions.
Czasopismo
Rocznik
Strony
1895--1913
Opis fizyczny
Bibliogr. 100 poz., rys., tab.
Twórcy
  • Department of Water Resources Study and Research, Water Research Institute (WRI), District 4, Bahar Blvd, Tehran, Tehran, Iran
  • Hubert H. Humphrey Fellowship Program, Global Affairs, University of California, 10 College Park, Davis, CA 95616, USA
  • California Environmental Protection Agency, Sacramento, CA 95814, USA
  • Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada
Bibliografia
  • 1. Abdolahzadeh M, Schmalz B (2022) Assessment of wavelet-SVR and wavelet-GP models in predicting the groundwater level using areal precipitation and consumption data. Hydrol Sci J. https://doi.org/10.1080/02626667.2022.2064755
  • 2. Ahmadi A, Olyaei M, Heydari Z, Emami M, Zeynolabedin A et al (2022a) Groundwater level modeling with machine learning: a systematic review and meta-analysis. Wires Water 14:949
  • 3. Ahmadi F, Mehdizadeh S, Nourani V (2022b) Improving the performance of random forest for estimating monthly reservoir inflow via complete ensemble empirical mode decomposition and wavelet analysis. Stoch Environ Res Risk. https://doi.org/10.1007/s00477-021-02159-x
  • 4. Alcalá FJ, Martínez-Pagán P, Paz MC, Navarro M, Pérez-Cuevas J, Domingo F (2021) Combining of MASW and GPR imaging and hydrogeological surveys for the groundwater resource evaluation in a coastal urban area in southern Spain. Appl Sci. https://doi.org/10.3390/app11073154
  • 5. Ali M, Prasad R, Xiang Y, Yaseen ZM (2020) Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.124647
  • 6. Ardabili S, Mosavi A, Várkonyi-Kóczy AR (2019) Advances in machine learning modeling reviewing hybrid and ensemble methods. In: International conference on global research and education. (pp. 215–227) Springer, Cham
  • 7. Arena S, Florian E, Zennaro I, Orrù PF, Sgarbossa F (2022) A novel decision support system for managing predictive maintenance strategies based on machine learning approaches. Saf Sci. https://doi.org/10.1016/j.ssci.2021.105529
  • 8. Arya Azar N, Kayhomayoon Z, Ghordoyee Milan S, Zarif Sanayei H, Berndtsson R, Nematollahi Z (2022) A hybrid approach based on simulation, optimization, and estimation of conjunctive use of surface water and groundwater resources. Environ Sci Pollut. https://doi.org/10.1007/s11356-022-19762-2
  • 9. Azimi H, Bonakdari H, Ebtehaj I, Gharabaghi B, Khoshbin F (2018) Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length. Acta MechACTA M. https://doi.org/10.1007/s00707-017-2043-9
  • 10. Azizpour A, Izadbakhsh MA, Shabanlou S, Yosefvand F, Rajabi A (2022) Simulation of time-series groundwater parameters using a hybrid metaheuristic neuro-fuzzy model. Environ. https://doi.org/10.1007/s11356-021-17879-4
  • 11. Bahmani R, Ouarda TB (2021) Groundwater level modeling with hybrid artificial intelligence techniques. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125659
  • 12. Bahmani R, Solgi A, Ouarda TB (2020) Groundwater level simulation using gene expression programming and M5 model tree combined with wavelet transform. Hydrol Sci J. https://doi.org/10.1080/02626667.2020.1749762
  • 13. Band SS, Heggy E, Bateni SM, Karami H, Rabiee M et al (2021) Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. Eng Appl Comput Fluid Mech. https://doi.org/10.1080/19942060.2021.1944913
  • 14. Barzegar R, Fijani E, Moghaddam AA, Tziritis E (2017) Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.04.189
  • 15. Baulon L, Allier D, Massei N, Bessiere H, Fournier M, Bault V (2022) Influence of low-frequency variability on groundwater level trends. J Hydrol. https://doi.org/10.1016/j.jhydrol.2022.127436
  • 16. Bezdek JC (2013) Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media, Germany
  • 17. Bhagat SK, Tiyasha T, Awadh SM, Tung TM, Jawad AH, Yaseen ZM (2021) Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.115663
  • 18. Brownlee J (2017) How much training data is required for machine learning. Machine Learning Mastery
  • 19. Campozano L, Mendoza D, Mosquera G, Palacio-Baus K, Célleri R, Crespo P (2020) Wavelet analyses of neural networks based river discharge decomposition. Hydrol Process. https://doi.org/10.1002/hyp.13726
  • 20. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2:1–27
  • 21. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn. https://doi.org/10.1007/BF00994018
  • 22. Coulibaly P, Anctil F, Aravena R, Bobée B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res. https://doi.org/10.1029/2000WR900368
  • 23. Dehghani R, Poudeh HT, Izadi Z (2022) The effect of climate change on groundwater level and its prediction using modern metaheuristic model. Groundw Sustain Dev. https://doi.org/10.1016/j.gsd.2021.100702
  • 24. Esmaeili G, Habibi A, Esmaeili HR (2022) Qanat system, an ancien water management system in Iran: history, architectural design and fish diversity. Int J Aquat Biol 10:131–144
  • 25. Ferreira AJ, Figueiredo MA (2012) Efficient feature selection filters for high-dimensional data. Pattern Recogn Lett 33(13):1794–1804
  • 26. Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs/0102027
  • 27. Geetikaverma VS (2016) Empirical wavelet transform & its comparison with empirical mode decomposition: a review. Int J Appl Eng, 4(5)
  • 28. Grossmann A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal. https://doi.org/10.1137/0515056
  • 29. Hill MC, Tiedeman CR (2006) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. John Wiley & Sons
  • 30. Holman IP, Rivas-Casado M, Bloomfield JP, Gurdak JJ (2011) Identifying non-stationary groundwater level response to North Atlantic ocean-atmosphere teleconnection patterns using wavelet coherence. Hydrogeol J. https://doi.org/10.1007/s10040-011-0755-9
  • 31. Ivakhnenko AG (1968) The group method of data of handling; a rival of the method of stochastic approximation. Sov Autom Control 13:43–55
  • 32. Jafari MM, Ojaghlou H, Zare M, Schumann GJP (2021) Application of a novel hybrid wavelet-ANFIS/fuzzy c-means clustering model to predict groundwater fluctuations. J Atmos. https://doi.org/10.3390/atmos12010009
  • 33. Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685
  • 34. Jiang Z, Yang S, Liu Z, Xu Y et al (2022) Can ensemble machine learning be used to predict the groundwater level dynamics of farmland under future climate: a 10-year study on Huaibei Plain. Environ Sci Pollut. https://doi.org/10.1007/s11356-022-18809-8
  • 35. Kalayeh HM, Landgrebe DA (1983) Predicting the required number of training samples. IEEE Trans Pattern Anal Mach Intell 6:664–667
  • 36. Kamali MZ, Davoodi S, Ghorbani H, Wood DA, Mohamadian N, Lajmorak S et al (2022) Permeability prediction of heterogeneous carbonate gas condensate reservoirs applying group method of data handling. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2022.105597
  • 37. Karbasi M, Karbasi M, Jamei M, Malik A, Azamathulla HM (2022) Development of a new wavelet-based hybrid model to forecast multi-scalar SPEI drought index (case study: Zanjan city, Iran). Theor Appl Climatol 147:499–522
  • 38. Kayhomayoon Z, Babaeian F, Ghordoyee Milan S, Arya Azar N, Berndtsson R (2022) A Combination of Metaheuristic Optimization Algorithms and Machine Learning Methods Improves the Prediction of Groundwater Level. Water 14:751
  • 39. Kazemi A, Esmaeilbeigi M, Saheb Z, Ansari A (2022) Health risk assessment of total chromium in the qanat as historical drinking water supplying system. Sci Total Environ 807:150795
  • 40. Khedri A, Kalantari N, Vadiati M (2020) Comparison study of artificial intelligence method for short term groundwater level prediction in the northeast Gachsaran unconfined aquifer. WSC. https://doi.org/10.2166/ws.2020.015
  • 41. Koc K, Ekmekcioğlu Ö, Gurgun AP (2022) Accident prediction in construction using hybrid wavelet-machine learning. Autom Constr. https://doi.org/10.1016/j.autcon.2021.103987
  • 42. Kochhar A, Singh H, Sahoo S, Litoria PK, Pateriya B (2022) Prediction and forecast of pre-monsoon and post-monsoon groundwater level: using deep learning and statistical modelling. Model Earth Syst Environ 8:2317–2329
  • 43. Kohli MD, Summers RM, Geis JR (2017) Medical image data and datasets in the era of machine learning—whitepaper from the 2016 C-MIMI meeting dataset session. J Electron Imaging 30:392–399
  • 44. Koza JR (1995) Survey of genetic algorithms and genetic programming. In Wescon conference record (pp. 589–594). Western Periodical Company
  • 45. Lange H, Sippel S (2020) Machine learning applications in hydrology. In Forest-water interactions, Springer, Cham, pp 233–257
  • 46. Li Z, Sun Z, Liu J, Dong H, Xiong W, Sun L, Zhou H (2022) Prediction of river sediment transport based on wavelet transform and neural network model. Appl Sci 12:647
  • 47. Liu Q, Dai H, Gui D, Hu BX, Ye M, Wei G et al (2022) Evaluation and optimization of the water diversion system of ecohydrological restoration megaproject of Tarim River, China, through wavelet analysis and a neural network. J Hydro. https://doi.org/10.1016/j.jhydrol.2022.127586
  • 48. Maghrebi M, Noori R, Sadegh M, Sarvarzadeh F et al (2022) Anthropogenic decline of ancient, sustainable water systems: qanats. Ground Water. https://doi.org/10.1111/gwat.13248
  • 49. Malekzadeh M, Kardar S, Saeb K, Shabanlou S, Taghavi L (2019) A novel approach for prediction of monthly ground water level using a hybrid wavelet and non-tuned self-adaptive machine learning model. Water Resour Manag 33:1609–1628. https://doi.org/10.1007/s11269-019-2193-8
  • 50. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/34.192463
  • 51. Mathworks (2019) The MathWorks Inc.: Natick, MA, USA.
  • 52. McClelland JL, Rumelhart DE, PDP Research Group (1987) Parallel Distributed Processing, Volume 2: Explorations in the Microstructure of Cognition: Psychological and Biological Models (Vol. 2). MIT press, Cambridge
  • 53. Mohammadi B (2022) Application of Machine Learning and Remote Sensing in Hydrology. Sustain 14:7586
  • 54. Momeneh S, Nourani V (2022) Forecasting of groundwater level fluctuations using a hybrid of multi-discrete wavelet transforms with artificial intelligence models. Hydrol Res 53:914–944
  • 55. Moosavi V, Mahjoobi J, Hayatzadeh M (2021) Combining group method of data handling with signal processing approaches to improve accuracy of groundwater level modeling. Nat Resour Res. https://doi.org/10.1007/s11053-020-09799-w
  • 56. Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and water quality models performance measures and evaluation criteria. Trans ASABE. https://doi.org/10.13031/trans.58.10715
  • 57. Mosaffa H, Sadeghi M, Mallakpour I, Jahromi MN, Pourghasemi HR (2022) Application of machine learning algorithms in hydrology. In Computers in Earth and Environmental Sciences, Elsevier, Netherlands, pp 585–591
  • 58. Nariman-Zadeh N, Darvizeh A, Darvizeh M, Gharababaei H (2002) Modelling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition. J Mater Process Technol. https://doi.org/101016/S0924-0136(02)00264-9
  • 59. Nguyen HT, Prasad NR, Walker CL, Walker EA (2002) A first course in fuzzy and neural control. CRC Press. https://doi.org/10.1201/9781420035520
  • 60. Niu WJ, Feng ZK (2021) Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. Sustain Cities Soc. https://doi.org/10.1016/j.scs.2020.102562
  • 61. Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. J Hydrol. https://doi.org/10.1016/j.jhydrol.2014.03.057
  • 62. Nourani V, Tajbakhsh AD, Molajou A (2019) Data mining based on wavelet and decision tree for rainfall-runoff simulation. Hydrol Res. https://doi.org/10.2166/nh.2018.049
  • 63. Osman AIA, Ahmed AN, Huang YF et al (2022) Past, present and perspective methodology for groundwater modeling-based machine learning approaches. Arch Comput Methods Eng 29:1–17
  • 64. Panahi M, Khosravi K, Golkarian A, Roostaei M et al (2022) A country-wide assessment of Iran’s land subsidence susceptibility using satellite-based InSAR and machine learning. Geocarto Int. https://doi.org/10.1080/10106049.2022.2086631
  • 65. Partal T, Kişi Ö (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol. https://doi.org/10.1016/j.jhydrol.2007.05.026
  • 66. Paul RK, Vennila S, Yeasin M, Yadav SK, Nisar S et al (2022) Wavelet decomposition and machine learning technique for predicting occurrence of spiders in pigeon pea. J Agron. https://doi.org/10.3390/agronomy12061429
  • 67. Pham QB, Kumar M, Di Nunno F, Elbeltagi A et al (2022) Groundwater level prediction using machine learning algorithms in a drought-prone area. Neural. Comput. Appl. 34:1–23
  • 68. Platt JC (1999) Fast training of support vector machines using sequential minimal optimization, advances in kernel methods. Support Vector Learning. https://doi.org/10.1109/ISKE.2008.4731075
  • 69. Poursaeid M, Poursaeid AH, Shabanlou S (2022) A comparative study of artificial intelligence models and a statistical method for groundwater level prediction. Water Resour Manag 36:1499–1519
  • 70. Quilty J, Adamowski J (2018) Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. J Hydrol. https://doi.org/10.1016/j.jhydrol.2018.05.003
  • 71. Rahbar A, Mirarabi A, Nakhaei M, Talkhabi M, Jamali M (2022) A comparative analysis of data-driven models (SVR, ANFIS, and ANNs) for daily Karst spring discharge prediction. Water Resour Manag. https://doi.org/10.1007/s11269-021-03041-9
  • 72. Rahman AS, Hosono T, Quilty JM, Das J, Basak A (2020) Multiscale groundwater level forecasting: coupling new machine learning approaches with wavelet transforms. Adv Water Resour. https://doi.org/10.1016/j.advwatres.2020.103595
  • 73. Rezaei M, Mousavi SF, Moridi A, Gordji ME, Karami H (2021) A new hybrid framework based on integration of optimization algorithms and numerical method for estimating monthly groundwater level. Arab J Geosci. https://doi.org/10.1007/s12517-021-07349-z
  • 74. Roshni T, Mirzania E, Hasanpour Kashani M, Bu QAT, Shamshirband S (2022) Hybrid support vector regression models with algorithm of innovative gunner for the simulation of groundwater level. Acta Geophys 70:1885–1898
  • 75. Saha S, Mallik S, Mishra U (2022) Groundwater depth forecasting using machine learning and artificial intelligence techniques: a survey of the literature. Recent developments in sustainable infrastructure (ICRDSI-2020)—GEO-TRA-ENV-WRM, 153–167
  • 76. Sahoo S, Jha MK (2013) Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. J Hydrol. https://doi.org/10.1007/s10040-013-1029-5
  • 77. Samani S, Ye M, Zhang F et al (2018) Impacts of prior parameter distributions on Bayesian evaluation of groundwater model complexity. Water Sci Eng. https://doi.org/10.1016/j.wse.2018.06.001
  • 78. Samani S, Vadiati M, Azizi F, Zamani E, Kisi O (2022) Groundwater level simulation using soft computing methods with emphasis on major meteorological components. Water Resour. 36:1–21
  • 79. Se L, Openshaw S (1999) Applying soft computing approaches to river level forecasting. Hydrol Sci J. https://doi.org/10.1080/02626669909492272
  • 80. Sedghi MM, Zhan H (2022) On the discharge variation of a qanat in an alluvial fan aquifer. J. Hydrol. 610:127922
  • 81. Seidu J, Ewusi A, Kuma JSY, Ziggah YY, Voigt HJ (2022) A hybrid groundwater level prediction model using signal decomposition and optimised extreme learning machine. Model Earth Syst Environ 8:3607–3624
  • 82. Sezen C, Partal T (2022) New hybrid GR6J-wavelet-based genetic algorithm-artificial neural network (GR6J-WGANN) conceptual-data-driven model approaches for daily rainfall–runoff modelling. Neural Comput Appl 34:1–25
  • 83. Shen C, Chen X, Laloy E (2021) Broadening the use of machine learning in hydrology. Frwa 3:681023
  • 84. Shiri N, Shiri J, Nourani V, Karimi S (2022) Coupling wavelet transform with multivariate adaptive regression spline for simulating suspended sediment load: independent testing approach. ISH J Hydraul Eng 28:356–365
  • 85. Singla P, Duhan M, Saroha S (2022) An ensemble method to forecast 24-h ahead solar irradiance using wavelet decomposition and BiLSTM deep learning network. Earth Sci Inform 15:291–306
  • 86. Solgi A, Pourhaghi A, Bahmani R, Zarei H (2017) Preprocessing data using wavelet transform and PCA based on support vector regression and gene expression programming for river flow simulation. J Earth Syst Sci. https://doi.org/10.1007/s12040-017-0850-y
  • 87. Su Z, Wu J, He X, Elumalai V (2020) Temporal changes of groundwater quality within the groundwater depression cone and prediction of confined groundwater salinity using Grey Markov model in Yinchuan area of northwest China. Health, Expos. https://doi.org/10.1007/s12403-020-00355-8
  • 88. Suryanarayana C, Sudheer C, Mahammood V, Panigrahi BK (2014) An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam. Neurocomputing, India. https://doi.org/10.1016/j.neucom.2014.05.026
  • 89. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett. https://doi.org/10.1023/A:1018628609742
  • 90. Tao H, Hameed MM, Marhoon HA et al (2022) Groundwater level prediction using machine learning models: a comprehensive review. Neurocomputing 489(271):308
  • 91. Vadiati M, Rajabi Yami Z, Eskandari E, Nakhaei M, Kisi O (2022) Application of artificial intelligence models for prediction of groundwater level fluctuations: case study (Tehran-Karaj alluvial aquifer). Environ Monit Assess. https://doi.org/10.1007/s10661-022-10277-4
  • 92. Vaidhehi V (2014) The role of dataset in training ANFIS system for course advisor. Int J Innov Res Adv Eng 1:249–253
  • 93. Wang H, Wang W, Du Y, Xu D (2021) Examining the applicability of wavelet packet decomposition on different forecasting models in annual rainfall prediction. Water. https://doi.org/10.3390/w13151997
  • 94. Wei A, Chen Y, Li D, Zhang X, Wu T, Li H (2022) Prediction of groundwater level using the hybrid model combining wavelet transform and machine learning algorithms. Earth Sci Inform. https://doi.org/10.1007/s12145-022-00853-0
  • 95. Wu C, Zhang X, Wang W, Lu C, Zhang Y et al (2021) Groundwater level modeling framework by combining the wavelet transform with a long short-term memory data-driven model. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146948
  • 96. Zerouali B, Chettih M, Alwetaishi M, Abda Z et al (2021) Evaluation of Karst spring discharge response using time-scale-based methods for a mediterranean basin of Northern Algeria. Water. https://doi.org/10.3390/w13212946
  • 97. Zeydalinejad N (2022) Artificial neural networks vis-à-vis MODFLOW in the simulation of groundwater: a review. Model Earth Syst Environ 8:1–22
  • 98. Zhou F, Liu B, Duan K (2020) Coupling wavelet transform and artificial neural network for forecasting estuarine salinity. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125127
  • 99. Zhou Y, Cui Z, Lin K, Sheng S, Chen H, Guo S, Xu CY (2022) Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques. J Hydrol. https://doi.org/10.1016/j.jhydrol.2021.127255
  • 100. Zhu S, Ptak M, Yaseen ZM, Dai J, Sivakumar B (2020) Forecasting surface water temperature in lakes: a comparison of approaches. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.124809
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b3db57a-ecb8-4c91-99bc-aa1e5e0142c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.