Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main motive of this research is to develop an energy absorber system for automobiles and perform an experimental disquisition by applying different parameters to check the effect of the crash on the machine’s front cushion by perfecting energy-absorbing capacity for the passenger safety aspect. Considering automobile vehicle speed limits similar to (Low, Medium, and High), the speed limits in India vary by state and vehicle type. In Karnataka, there is no limit (60 km/hr for buses in Bangalore except on Airport Road where it is 80 km/hr and 100 km/hr for buses only on NH and 66 km/hr between Mangalore and Udupi). Transport vehicles have a limit of 66 km/hr. This data is set with cooperation between the state and the ministry of highway department for light motor vehicles and buses. My exploration: considering the norms as per international safety regulations, and the purpose of an automobile's safety systems, the experimental set-up was designed so that a straight pendulum would strike the bumper system, and the front, and rear impacts would hit at 4.5 to 5 km/h, and the loaded or unloaded car would hit at 3 km/h and 46 cm above the front and back corners. To achieve this goal and to develop the energy absorber system, we used appropriate parameters such as CAD, CAM, CAE, testing, Simulink, and hand computation, enforcing the criteria in a unique development perspective by adding crash capability with a spring-loaded system, minimising crash effects, increasing immersion capacity, and implementing it on the SUV front cushion system
Rocznik
Tom
Strony
69--91
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- 1Department of Mechanical Engineering, KLS’s Gogte Institute of Technology Belagavi, India. Visvesvaraya Technological University Belagavi. BVCOE Lavale, Pune
autor
- Department of Mechanical Engineering, KLS’s Gogte Institute of Technology Belagavi, India. Visvesvaraya Technological University Belagavi
Bibliografia
- 1. Roa A.M., S. Chandra. 2022. „A close examination of posted speed limits and its compliance on Indian State Highways”. European Transport 4(88): 1-16. DOI: 10.48295/ET.2022.88.4.
- 2. Mei L., C.A. Thole. 2007. „Data analysis for parallel car-crash simulation results and model optimization”. Simulation Modelling Practice and Theory16(3): 329-337. DOI: 10.1016/j.simpat.2007.11.018.
- 3. Bhuyan A., O. Ganilova. 2012. „Crush Can Behaviour as an Energy Absorber in a Frontal Impact”. Journal of Physics: Conference Series 382: 012009. August, 2012. University of Glasgow. P. 28-31. DOI: 10.1088/1742-6596/382/1/012009.
- 4. Elewa R.E., S.A. Afolalu, O.S.I. Fayomi. 2019. „Overview Production Process and Properties of Galvanized Roofing Sheets”. Journal of Physics: Conference Series 1378022069. December, 2019. IOP Publishing. P. 1-11. DOI: 10.1088/1742-6596/1378/2/022069.
- 5. Abedrabbo N., R. Mayer. 2009. „Crash response of advanced high-strength steel tubes: Experiment and model”. International journal of Impact Engineering 36(8): 1044-1057. DOI: 10.1016/j.ijimpeng.2009.02.006.
- 6. Sayyad F.B., A.D. Deshmukh. 2013. „Crash Analysis of Bumper Assembly with Solver to Improvise the Design for Impact Tests”. International Journal of Engineering Research & Technology 2(6): 1282-1289. DOI: 10.17577/IJERTV2IS60577.
- 7. Gumruk R., S. Karadeniz. 2009. „The influences of the residual forming data on the quasi-static axial crash response of a top-hat section”. International Journal of Mechanical Sciences 51(5): 350-362. DOI: 10.1016/j.ijmecsci.2009.03.010.
- 8. Lademo O.G., T. Berstad, M. Eriksson, T. Tryland, T. Furu, O.S. Hopperstad, M. Langseth. 2007. „A model for process-based crash simulation”. International Journal of Impact Engineering 35(5): 376-388. DOI: 10.1016/j.ijimpeng.2007.03.004.
- 9. Katore A.D., S. Jain 2016. „Comparative Analysis of Behaviour of Engineering Composite Materials and Their Effect on Automobile Bumper Design”. Available at: https://www.slideshare.net/paperpublications3/ comparative-analysis-of-behaviour-of-engineering-composite-materials-their-effect-on-automobile-bumper-design.
- 10. Zeng F., H. Xie, Q. Liu, F. Li, W. Tan. 2015. „Design and optimization of a new composite bumper beam in high-speed frontal crashes”. Structural and Multidisciplinary Optimization 53(1): 1-9. DOI: 10.1007/s00158-015-1312-2.
- 11. Ince F., H.S. Turkmen, Z. Mecitoglu, N. Uludag, I. Durgun, E. Altnok, H. Orenel. 2011. „A numerical and experimental study on the impact behaviour of box structures”. Procedia Engineering 10(1): 1736-1741. DOI: 10.1016/j.proeng.2011.04.289.
- 12. Teng T.L., F.A. Changb, Y. Liuc, C.P. Peng. 2007. „Analysis of the dynamic response of vehicle occupant in a frontal crash using multibody dynamics method”. Mathematical and computer Modeling 48(11): 1724-1736. DOI: 10.1016/j.mcm.2007.10.020.
- 13. AIS-120. (2014, September). Automotive Vehicles - Automotive Vehicles - External Projections – Performance Requirements for M1 Vehicle. Available at: https://morth.nic.in/sites/default/files/ASI/7152016103503AMAIS_120_with_Amd.pf.
- 14. E/ECE/324. (1980, March). Uniform provisions concerning the approval of vehicles with regard to their front and rear protective devices (bumpers, etc). Available at: https://idoc.pub/documents/ece-r42-34m7orxqd846/.
- 15. Xu F., X. Tian, G. Li. 2015. „Experimental Study on Crashworthiness of Functionally Graded Thickness Thin-Walled Tubular Structures”. Experimental Mechanics 55(7): 1339-1352. DOI: 10.1007/s11340-015-9994-3.
- 16. Balaji G., A. Krishnamoorthy. 2021. „Numerical simulation of crashworthiness parameters for design optimization of an automotive crash-box”. International Journal for Simulation and Multidisciplinary Design Optimization 13(3): 1-11. DOI: 10.1051/smdo/2021036.
- 17. Marzbanrad J., M. Alijanpour, M. SaeidKiasat. 2009). „Design and analysis of an automotive bumper beam in low-speed frontal crashes”. Thin walled structures 47(8): 902-911. DOI: 10.1016/j.tws.2009.02.007.
- 18. PCB Piezotronics. (May, 2016). Impact & Drop Testing. Available at: https://www.pcb.com/ Content Store/ Mktg/ Downloads/WPL_5_Impact.pdf.
- 19. Rocha C.L., D.A. Fabricio, V.M. Costa, A. Reguly. 2016. „Quality assurance of absorbed energy in Charpy impact test”. Journal of Physics: Conference Series 733: 012009. August, 2016. Brazilian Congress on Metrology. P. 1-4. DOI: 10.1088/1742-6596/733/1/012009.
- 20. Wilhelm E., L. Rodgers, R. Bornatico. 2013. „Real-time electric vehicle mass identification”. World Electric Vehicle Journal 6(1): 141-146. DOI: 10.3390/wevj6010141.
- 21. Sun Y.Q., C. Cole, M. Mcclanachan. 2010. „The Calculation of Wheel Impact Force Due to the Interaction between Vehicle and a Turnout”. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit 1(5): 1-13. DOI: 10.1243/09544097JRRT350.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b3b400e-4c25-44aa-a332-079c385c31c7