PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the Role of Atmospheric Variables on Sea Level Variations in the Eastern Central Red Sea Using an Artificial Neural Network Approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Atmospheric variables play a major role in sea level variations in the eastern central Red Sea, where the role of tides is limited to 20% or less. Extensive analysis of daily-averaged residual sea level and atmospheric variables (atmospheric pressure, air temperature, wind stress components, and evaporation rate) indicated that sea level variations in the eastern central Red Sea are mainly contributed to by the seasonal and weather-band variations in the utilized atmospheric variables. The Non-linear Auto-Regressive Network with eXogenous inputs (NARX), a type of Artificial Neural Network (ANN), was applied to investigate the role of the atmospheric variables on the sea level variations at the eastern central Red Sea. Forced by time-delayed daily-averaged observations of atmospheric variables and residual sea level, the constructed NARX-based model showed high performance in predicting the one-step-ahead residual sea level. The high performance indicated that the constructed model was able to efficiently recognize the role played by the atmospheric variables on the residual sea level variations. Further investigations, using the constructed NARX-based model, revealed the seasonal variation in the role of the atmospheric variables. The study also revealed that the role played by some of the atmospheric variables, on sea level variations, could be masked by the role of one or more of the other atmospheric variables. The obtained results clearly demonstrated that this neurocomputing (NARX) approach is effective in investigating the individual and combined role of the atmospheric variables on residual sea level variations.
Czasopismo
Rocznik
Strony
267--290
Opis fizyczny
Bibliogr. 64 poz., mapa, rys., tab., wykr.
Twórcy
  • Marine Physics Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
  • Marine Physics Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
  • Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Bibliografia
  • [1] Abdallah, A. M., Eid, F. M., 1989. On the Steric Sea Level in the Red Sea. International Hydrographic Review, Monaco LXVI (1), 115-124, https://journals.lib.unb.ca/index.php/ihr/article/view/23351/27126.
  • [2] Abdelrahman, S. M., 1997. Seasonal Fluctuation of Mean Sea Level at Gizan, Red Sea. J. Coast. Res. 13 (4), 1166-1172, https://www.jstor.org/stable/4298725?seq=1#page_scan_tab_contents.
  • [3] Ahmad, F., Sultan, S. A. R., 1989. Surface heat fluxes and their comparsion with the oceanic heat flow in the Red sea. Oceanol. Acta 12 (1), 33-36, https://archimer.ifremer.fr/doc/00106/21751/19324.pdf.
  • [4] Ahmad, F., Sultan, S. A. R., 1993. Tidal and Sea Level Changes at Jeddah, Red Sea. Pakistan J. Mar. Sci. 2 (2), 77-84, https://core.ac.uk/download/pdf/33719829.pdf.
  • [5] Alawad, K. I., Al-Subhi, A. M., Alsaafani, M. A., Alraddadi, T. M., 2017. Signature of tropical climate modes driven signals on the Red Sea and Gulf of Aden sea level. Indian J. Geo-Mar. Sci. 46 (10), 2088-2096, http://nopr.niscair.res.in/handle/123456789/42751.
  • [6] Basheer, I., Hajmeer, M., 2000. Artificial Neural Networks: Fundamentals, Computing, Design, and Application. J. Microbiol. Methods 43 (1), 3-31, https://doi.org/10.1016/S0167-7012(00)00201-3.
  • [7] Beale, M. H., Hagan, M. T., Demuth, H. B., 2014. Neural Network ToolboxTM User’s Guide. The MathWorks, Inc., Natick, MA, USA.
  • [8] Churchill, J. H., Abualnaja, Y., Limeburner, R., Nellayaputhenpeedika, M., 2018. The Dynamics of Weather-Band Sea Level Variations in the Red Sea. Reg. Stud. Mar. Sci. 24, 336-342, https://doi.org/10.1016/j.rsma.2018.09.006.
  • [9] Cromwell, D., Smeed, D. A., 1998. Altimetric Observations of Sea Level Cycles Near the Strait of Bab al Mandab. Int. J. Remote Sens. 19, 1561-1578, https://doi.org/10.1080/014311698215351.
  • [10] Cox, D. T., Tissot, P., Michaud, P., 2002. Water Level Observations and Short-Term Predictions Including Meteorological Events for Entrance of Galveston Bay, Texas. J. Waterw. Port C-ASCE 128 (1), 21-29, https://doi.org/10.1061/(ASCE)0733-950X(2002)128:1(21).
  • [11] De Lange, W. P., Carter, R. M., 2014. Sea-Level Change: Living with Uncertainty. The Global Warming Policy Foundation, GWPF Rep. 15, London, UK, 48 pp.
  • [12] Deo, M. C., Chaudhari, G., 1998. Tide Prediction Using Neural Networks. Compu-Aided. Civ. Inf. 13 (2), 113-120, https://doi.org/10.1111/0885-9507.00091.
  • [13] Eid, F. M., Abdallah, A. M., 1994. The Relations Between Steric Components and Hydrographic parameters in the Red Sea. Bull. Fac. Sc. Alex. Univ. 34 (1), 97-105.
  • [14] Eid, F. M., Kamel, M. S., 2004. Contribution of Water Density to Sea Level Fluctuations in Red Sea. J. KAU. Mar. Sci. 15 (1), 113-138, https://www.kau.edu.sa/Files/320/Researches/51831_21963.pdf.
  • [15] Eltaib, E. B. A., 2010. Tides analysis in the Red Sea in port Sudan and Gizan. Geophys. Insti., Univ., Bergen, Norway, 61 pp.
  • [16] Emery, W. J., Thomson, R. E., 2001. Data Analysis Methods in Physical Oceanography. 2nd Edn. Elsevier Sci. B.V., Amsterdam, 638 pp.
  • [17] Ghorbani, M. A., Khatibi, R., Aytek, A., Makarynskyy, O., Shiri, J., 2010. Sea Water Level Forecasting Using Genetic Programming and Comparing the Performance with Artificial Neural Networks. Comput. Geosci. 36 (5), 620-627, https://doi.org/10.1016/j.cageo.2009.09.014.
  • [18] Hecht-Nielsen, R., 1990. Neurocomputing. Addison-Wesley, Boston, 433 pp.
  • [19] Herting, A., Farmer, T., Evans, J., 2004. Mapping of the evaporative loss from Elephant Butte reservoir using remote sensing and GIS technology. New Mexico State Univ. Rep., USA, 30 pp.
  • [20] Islam, P., Morimoto, T., 2015. Performance Prediction of Solar Collector Adsorber Tube Temperature using a Nonlinear Autoregressive Model with eXogenous Input. IJCA 114 (12), 24-32, https://doi.org/10.5120/20031-2129.
  • [21] Jiang, H., Farrar, J. T., Beardsley, R. C., Chen, R., Chen, C., 2009. Zonal Surface Wind Jets across the Red Sea due to Mountain Gap Forcing along both sides of the Red Sea. Geophys. Res. Lett. 36 (19), art. no. L19605, 6 pp, https://doi.org/10.1029/2009GL040008.
  • [22] Karimi, S., Kisi, O., Shiri, J., Makarynskyy, O., 2013. Neuro-fuzzy and Neural Network Techniques for Forecasting Sea Level in Darwin Harbor, Australia. Comput. Geosci. 52, 50-59, https://doi.org/10.1016/j.cageo.2012.09.015.
  • [23] Kisi, O., Karimi, S., Shiri, J., Makarynskyy, O., Yoon, H., 2014. Forecasting Sea Water Levels at Mukho Station, South Korea Using Soft Computing Techniques. Int. J. Oce. Climate Sys. 4, 175-188, https://doi.org/10.1260/1759-3131.5.4.175.
  • [24] Large, W. G., Pond, S., 1981. Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. J. Phys. Oceanogr. 11, 324-336, https://doi.org/10.1175/1520-0485(1981)011%3C0324:OOMFMI%3E2.0.CO;2.
  • [25] Lee, T. L., Makarynskyy, O., Shao, C. C., 2007. A Combined Harmonic Analysis-Artificial Neural Network Methodology for Tidal Predictions. J. Coast. Res. 23 (3), 764-770, https://doi.org/10.2112/05-0492.1.
  • [26] Li, Y., Han, W., 2015. Decadal Sea Level Variations in the Indian Ocean Investigated with HYCOM: Roles of Climate Modes, Ocean Internal Variability, and Stochastic Wind Forcing. J. Clim. 28, 9143-9165, https://doi.org/10.1175/JCLI-D-15-0252.1.
  • [27] Londhe, S., 2011. Forecasting Water Levels Using Artificial Neural Networks. Int. J. Oce. Climate Sys. 2 (2), 119-135, https://doi.org/10.1260/1759-3131.2.2.119.
  • [28] Madah, F., Mayerle, R., Bruss, G., Bento, J., 2015. Characteristics of Tides in the Red Sea Region, a Numerical Model Study. OJMS 05 (02), 193-209, https://doi.org/10.4236/ojms.2015.52016.
  • [29] Maghrabi, S. O., 2003. Variations of Mean Sea Level in the Red Sea M.Sc. thesis. King Abdulaziz Univ., Saudi Arabia.
  • [30] Mahmoud, S., 2012. Identification and Prediction of Abnormal Behaviour Activities of Daily Living in Intelligent Environments. Nottingham Trent Univ., UK, 177 pp.
  • [31] Makarynska, D., Makarynskyy, O., 2008. Predicting Sea-level Variations at the Cocos (Keeling) Islands with Artificial Neural Networks. Comput. Geosci. 34 (12), 1910-1917, https://doi.org/10.1016/j.cageo.2007.12.004.
  • [32] Makarynskyy, O., Makarynska, D., Kuhn, M., Featherstone, W. E., 2004. Predicting Sea Level Variations with Artificial Neural Networks at Hillarys Boat Harbour, Western Australia. Estuar. Coast. Shelf. Sci. 61 (2), 351-360, https://doi.org/10.1016/j.ecss.2004.06.004.
  • [33] Manasrah, R., Hasanean, H. M., Al-Rousan, S., 2009. Spatial and seasonal variations of sea level in the Red Sea, 1958-2001. Ocean. Sci. J. 44 (3), 145-159, https://doi.org/10.1007/s12601-009-0013-4.
  • [34] Milne, G. A., Gehrels, W. R., Hughes, C. W., Tamisiea, M. E., 2009. Identifying the Causes of Sea-level Change. Nat. Geosci. 2 (7), 471-478, https://doi.org/10.1038/ngeo544.
  • [35] Moghadam, F. M., 2016. Neural Network-Based Approach for Identification of Meteorological Factors Affecting Regional Sea-Level Anomalies. J. Hydrologic. Eng-ASCE. 22 (3), https://doi.org/10.1061/(ASCE)HE.1943-5584.0001472.
  • [36] Mohamad, K. I., 2012. Sea Level Variation in the Red Sea Based on SODA data M.Sc. thesis. Geophys. Inst., Univ., Bergen, Norway, 47 pp.
  • [37] Nitsure, S. P., Londhe, S. N., Khare, K. C., 2014. Prediction of Sea Water Levels Using Wind Information and Soft Computing Techniques. Appl. Ocean. Res. 47, 344-351, https://doi.org/10.1016/j.apor.2014.07.003.
  • [38] Osman, M. M., 1984. Variations of Sea Level at Port Sudan. Int.l Hydrographic Rev. LXI, 137-144.
  • [39] Parker, B. B., 2007. Tidal Analysis and Prediction. National Ocean Service, NOAA Spec. Publ. https://doi.org/10.25607/OBP-191.
  • [40] Pashova, L., Popova, S., 2010. Daily Sea Level Forecast at Tide Gauge Burgas, Bulgaria Using Artificial Neural Networks. J. Sea Res. 66, 154-161, https://doi.org/10.1016/j.seares.2011.05.012.
  • [41] Patzert, W. C., 1972. Seasonal Variations in Structure and Circulation in the Red Sea Ph.D. thesis. Univ. Hawaii, Honolulu, 186 pp.
  • [42] Patzert, W. C., 1974. Wind-induced Reversal in Red Sea Circulation. Deep-Sea Res 21, 109-121, https://doi.org/10.1016/0011-7471(74)90068-0.
  • [43] Pawlowicz, R., Beardsley, B., Lentz, S., 2002. Classical Tidal Harmonic Analysis Including Error Estimates in Matlab Using T-tide. Comput. Geosci. 28 (8), 929-937, https://doi.org/10.1016/S0098-3004(02)00013-4.
  • [44] Pugh, D., Woodworth, P., 2014. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes, 2nd edn. Cambridge Univ. Press, 407 pp.
  • [45] Pugh, D. T., 1981. Tidal Amphidrome Movement and Energy Dissipation in the Irish Sea. Geophys. J. Roy. Astr. Soc. 67, 515-527, https://doi.org/10.1111/j.1365-246X.1981.tb02763.x.
  • [46] Pugh, D. T., 1987. Tides, Surges and Mean Sea Level. John Wiley & Sons Ltd., 472 pp.
  • [47] Pugh, D. T., Abualnaja, Y., 2015. Sea-Level changes. In: Rasul, N. M. A., Stewart, I. C. F. (Eds.), The Red Sea: the formation, morphology, oceanography and environment of a young ocean basin. Springer Earth System Sciences, Berlin, Heidelberg, 317-328, https://doi.org/10.1007/978-3-662-45201-1_18.
  • [48] Pugh, D. T., Abualnaja, Y., Jarosz, E., 2019. The Tides of the Red Sea. In: Rasul, N. M. A., Stewart, I. C. F. (Eds.), Oceanographic and Biological Aspects of the Red Sea. Springer, Cham, 11-40, https://doi.org/10.1007/978-3-319-99417-8_2.
  • [49] Rakshith, S., Dwarakish, G. S., Natesan, U., 2014. Tidal-level Forecasting Using Artificial Neural Networks Along the West Coast of India. JSCE 2 (1), 176-187, https://doi.org/10.2208/journalofjsce.2.1_176.
  • [50] Salim, A. M., Dwarakish, G. S., Liju, K. V., Justin, T., Gayathri, D., Rajeesh, R., 2015. Weekly Prediction of Tides Using Neural Networks. Procedia Eng. 116 (1), 678-682, https://doi.org/10.1016/j.proeng.2015.08.351.
  • [51] Sertel, E., Cigizoglu, H. K., Sanli, D. U., 2008. Estimating Daily Mean Sea level Using Artifitial Neural Networks. J. Coast. Res. 24 (3), 727-734, https://doi.org/10.2112/06-742.1.
  • [52] Shamji, V. R., Vineesh, T. C., 2017. Shallow-Water Tidal Analysis at Sharm Obhur, Jeddah, Red Sea. Arab. J. Geosci. 10 (3), 11 pp., https://doi.org/10.1007/s12517-016-2822-y.
  • [53] Sofianos, S. S., Johns, W. E., 2001. Wind Induced Sea Level Variability in the Red Sea. Geophys. Res. Lett. 28 (16), 3175-3178, https://doi.org/10.1029/2000GL012442.
  • [54] Sofianos, S. S., Johns, W. E., 2003. An Oceanic General Circulation Model (OGCM) Investigation of the Red Sea circulation: 2. Three-dimensional Circulation in the Red Sea. J. Geophys. Res. 108 (C3), 15 pp., https://doi.org/10.1029/2001JC001185.
  • [55] Sultan, S. A. R., Ahmad, F., 2000. Annual and Semi-annual Variations of Sea Level at Jeddah, Central Coastal Station of the Red Sea. Indian J. Mar. Sci. 29 (3), 201-205, http://nopr.niscair.res.in/bitstream/123456789/25521/1/IJMS%2029%283%29%20201-205.pdf.
  • [56] Sultan, S. A. R., Ahmad, F., Elghribi, N. M., 1995a. Sea Level Variability in the Central Red Sea. Oceanol. Acta 18 (2), 607-615, https://archimer.ifremer.fr/doc/00096/20766/.
  • [57] Sultan, S. A. R., Ahmad, F., El-Hassan, A., 1995b. Seasonal Variations of the Sea Level in the Central Part of the Red Sea. Estuar. Coast. Shelf Sci. 40, 1-8, https://doi.org/10.1016/0272-7714(95)90008-X.
  • [58] Sultan, S. A. R., Ahmad, F., Nassar, D., 1996. Relative contributions of external sources of mean sea-level variations at Port Sudan, Red Sea. Estuar. Coast Shelf. Sci. 42 (1), 19-30, https://doi.org/10.1006/ecss.1996.0002.
  • [59] Sultan, S. A. R., Elghribi, N. M., 2003. Sea Level Changes in the Central Part of the Red Sea. Indian J. Mar. Sci. 32 (2), 114-122, http://nopr.niscair.res.in/bitstream/123456789/4254/1/IJMS%2032(2)%20114-122.pdf.
  • [60] Tsai, C. P., Lee, T. L., 1999. Back-Propagation Neural Network in Tidal-level Forecasting. J. Waterw. Port C-ASCE. 125, 195-202, https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(195).
  • [61] Wahr, J., Smeed, D. A., Leuliette, E., Swenson, S., 2014. Seasonal Variability of the Red Sea, from Satellite Gravity, Radar Altimetry, and in Situ Observations. J. Geophys. Res.-Oceans 119, 5091-5104, https://doi.org/10.1002/2014JC010161.
  • [62] Willis, J.K., Chambers, D. P., Nerem, R. S., 2008. Assessing the Globally Averaged Sea Level Budget on Seasonal to Interannual Timescales. J. Geophys. Res.-Oceans 113 (C6), 9 pp., https://doi.org/10.1029/2007JC004517.
  • [63] Zhai, P., Bower, A. S., 2013. The Response of the Red Sea to a Strong Wind Jet Near the Tokar Gap in Summer. J. Geophys. Res.-Oceans 118 (1), 422-434, https://doi.org/10.1029/2012JC008444.
  • [64] Zubier, K. M., 2010. Sea Level Variations at Jeddah, Eastern Coast of Red Sea. J. KAU. Mar. Sci. 21 (2), 73-86, https://www.kau.edu.sa/Files/320/Researches/59382_29726.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b3ae507-19ba-4f65-838d-56fbf97beb5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.