PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coating of Seeds with Collagen Hydrolysates from Leather Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Otoczkowanie nasion hydrolizatem kolagenu z odpadów skórzanych
Języki publikacji
EN
Abstrakty
EN
The subject of this paper is improvement in the growth and yield of three different types of legumes and rape in drought conditions by coating seeds with hydrolysed collagen from tanning waste. In addition, the impact of various additives in the seed shell on the growth of the plant was investigated. The encapsulation process of seeds was conducted on a disc granulator. A centrally placed seed was first coated with a layer of fungicides. The next layer was collagen hydrolysate, collagen hydrolysate with latex or a solution of yellow dextrin and polyvinyl alcohol. The outer layer was a mineral additive e.g. dolomite or kaolin. After the end of the encapsulation process on the disk granulator, all of the seeds tested were sown into soils. Seeds without coating were also sown as control seeds. Seedlings were maintained for 29 days with cultivation without irrigation. The length of the seedlings was analysed for all of the seeds sown. Higher seedling growth values were obtained for seeds coated with collagen hydrolysate in comparison with control seeds (without coating). The use of collagen hydrolysate gave slightly better results than in the case of a solution of dextrin with polyvinyl alcohol.
PL
Specyficzne właściwości pozyskanego z odpadów skórzanych hydrolizatu kolagenowego umożliwiły jego zastosowanie w procesie otoczkowania nasion roślin strączkowych oraz rzepaku w celu zmniejszenia ryzyka związanego z niewykiełkowaniem nasion podczas suszy, zwiększenia plonów oraz wskazanie nowego kierunku zagospodarowania odpadowych produktów branżowych. Proces otoczkowania poszczególnych nasion przeprowadzono w granulatorze talerzowym. Centralnie umieszczone nasiona najpierw pokryto warstwą fungicydów. Kolejną warstwą był hydrolizat kolagenu, hydrolizat kolagenu z lateksem lub roztwór żółtej dekstryny i alkoholu poliwinylowego. Zewnętrzną warstwę stanowił dodatek mineralny. Analizę chromatograficzną składu aminokwasów przeprowadzono dla preparatu kolagenowego oraz dla losowo wybranych ziaren po otoczkowaniu. Po procesach powlekania nasiona wysiano do gleby uniwersalnej. Analizowano długość siewek dla zasianych nasion w okresie 29 dni bez dostępu wody. Wyższe wartości wzrostu siewek uzyskano dla nasion pokrytych hydrolizatem kolagenu w porównaniu z nasionami kontrolnymi tj. bez powłoki oraz w przypadku otoczek z roztworem dekstryny i z polialkoholem winylowym.
Słowa kluczowe
Rocznik
Strony
59--64
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • ŁUKASIEWICZ Research Network, Institute of Leather Industry, Zgierska 73, 91-462 Lodz, Poland
  • ŁUKASIEWICZ Research Network, Institute of Leather Industry, Zgierska 73, 91-462 Lodz, Poland
  • ŁUKASIEWICZ Research Network, Institute of Leather Industry, Zgierska 73, 91-462 Lodz, Poland
  • ŁUKASIEWICZ Research Network, Institute of Leather Industry, Zgierska 73, 91-462 Lodz, Poland
  • ŁUKASIEWICZ Research Network, Institute of Leather Industry, Zgierska 73, 91-462 Lodz, Poland
  • INCDTP Leather and Footwear Research Institute Division, Leather Research Department, 93, Ion Minulescu St, Bucharest, 3, 031215, Romania
  • Probstdorfer Saatzucht Romania SR., 20, Siriului Str., Bucharest, 1, 014354, Romania
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 90-001 Lodz, Poland
Bibliografia
  • 1. Kuchlan M K, Dadlani M, Samuel D V K. Seed coat properties and longevity of soybean seeds. Journal of New Seeds 2010; 11(3): 239–249.
  • 2. Laskowski J, Skonecki S. Influence of moisture on the physical properties and parameters of the compression process of legumes' seeds. International Agrophysics 1997; 11(45): 245-256.
  • 3. Talebi R, Naji A M, Fayaz F. Geographical patterns of genetic diversity in cultivated chickpea (Cicer arietinum L.) characterized by amplified fragment length polymorphism. Plant Soil Environment 2008; 54(10): 447–452.
  • 4. Borowska M, Prusinski J, Kaszkowiak E. Production results of intensification of cultivation technologies in three lupin (Lupinus L.) species. Plant, Soil and Environment 2015; 61 (9): 426–431.
  • 5. Adebiyi A P, Aluko R E. Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chemistry 2011; 128: 902–908.
  • 6. Can Karaca A, Low N, Nickerson M. Encapsulation of Flaxseed Oil Using a Benchtop Spray Dryer for Legume Protein–Maltodextrin Microcapsule Preparation. Journal of Agricultural and Food Chemistry 2013; 61(21): 5148–5155.
  • 7. Oakes J L, Bost K L, Piller K J. Stability of a soybean seed-derived vaccine antigen following long-term storage, processing and transport in the absence of a cold chain. Journal of the Science of Food and Agriculture 2009; 89: 2191–2199.
  • 8. Pereira H V R, Saraiva K P, Carvalho L M J, Andrade L R, Pedrosa C, Pierucci A P T R. Legumes seeds protein isolates in the production of ascorbic acid microparticles. Food Research International 2009; 42(1): 115-121.
  • 9. Szczepaniak W, Grzebisz W, Potarzycki J, Łukowiak R, Przygocka-Cyna K. Nutritional status of winter oilseed rape in cardinal stages of growth as the yield indicator. Plant, Soil and Environment 2015; 61(7): 291-296.
  • 10. Tas S, Tas B. Some physiological responses of drought stress in wheat genotypes with different ploidity in Turkiye. World Journal of Agricultural Sciences 2007; 3: 178- 183.
  • 11. Flowers T J. Improving crop salt tolerance. Journal of Experimental Botany 2004; 55: 307-319.
  • 12. Yazar A, Gökçel F, Sezen M S. Corn yield response to partial rootzone drying and deficit irrigation strategies applied with drip system. Plant Soil and Environment 2009; 55(11): 494-503.
  • 13. Duarte C R, Neto J L V, Lisboa M H, Santana R C, Barrozo M A S, Murata V V. Experimental study and simulation of mass distribution of the covering layer of soybean seeds coated in a spouted bed. Brazilian Journal of Chemical Engineering 2004; 21(1): 59–67.
  • 14. Mazibuko T G, Modi A T. Comparison of osmopriming and seed coating with calcium salts for green bean performance under field conditions. I. Cotyledonal cracking. South African Journal of Plant and Soil 2005; 22(1): 9-15.
  • 15. Tapan A, Kundu S, Rao A S. Zinc delivery to plants through seed coating with nanozinc oxide particles. Journal of Plant Nutrition 2016; 39(1): 136-146.
  • 16. Tripathi B, Pandey A, Bhatia R, Walia S, Yadav A K. Improving soybean seed performance with natural colorant-based novel seed-coats. Journal of Crop Improvement 2015; 29(3): 301-318.
  • 17. Qiu J, Wang R, Yan J, Hu J. Seed film coating with uniconazole improves rape seedling growth in relation to physiological changes under waterlogging stress. Plant Growth Regulation 2005; 47(1): 75-81.
  • 18. Rehman A, Farooq M. Boron application through seed coating improves the water relations, panicle fertility, kernel yield, and biofortification of fine grain aromatic rice. Acta Physiologiae Plantarum 2013; 35(2): 411-418.
  • 19. Zeng D, Wang F, Wang Z. Preparation and study of a novel, environmentally friendly seed-coating agent for wheat. Communications in Soil Science and Plant Analysis 2012; 43(10): 1490-1497.
  • 20. Ławińska K, Gendaszewska D, Grzesiak E, Jagiełło J, Obraniak A. Use of tanning waste in seed production. Przemysl Chemiczny 2017; 97(11): 2344-2347.
  • 21. Ławińska K, Gendaszewska D, Grzesiak E, Lasoń-Rydel M, Obraniak A. Coating of leguminosarum seeds with collagen hydrolyzates from tanning waste. Przemysł Chemiczny 2017; 9: 1877-1880.
  • 22. Dziuba R, Jabłońska M, Sulak K, Ławińska K. Textile Sector of the Visegrad Group Countries in Trade with the European Union. FIBRES & TEXTILES in Eastern Europe 2018; 26, 6(132): 24-29. DOI: 10.5604/01.3001.0012.5160.
  • 23. Ławińska K, Serweta W, Modrzewski R. Qualitative evaluation of the possible application of collagen fibres: composite materials with mineral fillers as insoles for healthy footwear. FIBRES & TEXTILES in Eastern Europe 2018; 26, 5(131): 81-85. DOI: 10.5604/01.3001.0012.2536
  • 24. Ławińska K, Modrzewski R, Serweta W. Tannery shavings and mineral additives as a base of new composite materials. FIBRES & TEXTILES in Eastern Europe 2019.
  • 25. Ławińska K, Obraniak A, Modrzewski R. Granulation process of waste tanning shavings. FIBRES & TEXTILES in Eastern Europe 2019; 27, 2(134): 107-110. DOI: 10.5604/01.3001.0012.9994.
  • 26. Ławińska K, Serweta W, Modrzewski R. Studies on water absorptivity and desorptivity of tannery shavings-based composites with mineral additives. Przemysł Chemiczny 2019; 98(1): 106-109.
  • 27. Gluba T, Obraniak A. The kinetics of agglomeration of particulate material in the disc granulator. Chemical Engineering and Equipment 2009; 48(4): 46-47.
  • 28. Obidziński S, Joka M, Fijoł O. Two-stage agglomeration of fine-grained herbal nettle waste. International Agrophysics 2017; 31: 515-523.
  • 29. Obraniak A, Lawinska K. Spectrophotometric analysis of disintegration mechanisms (abrasion and crushing) of agglomerates during the disc granulation of dolomite. Granular Matter 2018; 20: 7.
  • 30. Obraniak A, Gluba T, Ławińska K, Derbiszewski B. Minimisation of environmental effects related with storing fly ash from combustion of hard coal. Environment Protection Engineering 2018; 4: 177-189.
  • 31. Heim A, Obraniak A, Gluba T. Change in the properties of beds granulated in disc granulators. Physicochemical Problems of Mineral Processing 2010; 44: 53-62.
  • 32. Almeida C, Rocha S C S, Razera L F. Polymer coating, germination and vigor of broccoli seeds. Scientia Agricola (Piracicaba, Braz.) 2005; 62(3): 221-226.
  • 33. Domoradzki M, Korpal W. Germination analysis for coated radish seeds, carried out using four selected bed types. Agricultural Engineering 2005; 2(111): 27-33.
  • 34. Ławińska K, Modrzewski R, Serweta W. The phenomenon of screen blocking for mixtures of varying blocking grain content. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 2018; 34(1): 83-95.
  • 35. Lawinska K, Modrzewski R. Analysis of sieve holes blocking in a vibrating screen and a rotary and drum screen. Physicochemical Problems of Mineral Processing 2017; 53(2): 812-828.
  • 36. Lawinska K, Wodzinski P, Modrzewski R. A method for determining sieve holes blocking degree. Physicochemical Problems of Mineral Processing 2015; 51(1): 15- 22.
  • 37. Grzesik M, Janas R, Górnik K, Romanowska-Duda Z. Biological and physical methods of seed production and processing. Journal of Research and Applications in Agricultural Engineering 2012; 57(3): 147-152.
  • 38. Patent PL 205570 Novel fungicide compositions based on pyridylmethylbenzamide and propamocarb derivative (31.05.2010 WUP 05/10).
  • 39. Hirano S, Hayashi M, Okuno S. Soybean seeds surface-coated with depolymerised chitins: chitinase activity as a predictive index for the harvest of beans in field culture. Journal of the Science of Food and Agriculture 2000; 81: 205-209.
  • 40. Gaidau C, Epure D G, Niculescu M, Stepan E, Radu E, Gidea M. Application of Collagen Hydrolysate in Cereal Seed Treatment. XXXIII IULTCS Congress November 24th – 27th, 2015 Novo Hamburgo/Brazil.
  • 41. Rubiales D, Pérez-De-Luque A, Fernández-Aparicio M, Sillero J C, Román B, Kharrat M, Khalil S, Joel D M, Riches C. Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 2006; 147: 187-199.
  • 42. Parker C. Observations on the current status of Orobanche and Striga problems worldwide. Pest Management Science 2009; 65: 453-459.
  • 43. Rubiales D. Legume breeding for broomrape resistance. Czech Journal of Genetics and Plant Breeding | Agricultural Journals 2014; 50: 144-150.
  • 44. Lin Y K, Liu D C. Comparison of physical–chemical properties of type I collagen from different species. Food Chemistry 2006; 99: 244-251.
  • 45. Angele P, Abke J, Kujat R, Faltermerier H, Schumann D, Nerlich M, Kinner B, Englert C, Ruszczak Z, Mehrl R, Mueller R. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 2004; 25: 2831-2841.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b3acdd7-874e-4c37-955d-fdce6c29652a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.