Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The data of the known field experiment on water injection in the borehole were analyzed. Parameters of self-similarity of seismicity were estimated in comparison with the changes of water pressure. Changes of seismicity parameters that indicate the redistribution of the failure from lower scales to upper are revealed. The total number of earthquakes per series of the water initiation found to be depended exponentially on the water pressure and seismic activity maximum is delayed gradually relative to beginning of initiation. The growth of induced seismicity zone in time differs from diffusion model for water flow in the porous medium. Analysis carried out from laboratory data indicates that diffusion growth of the failure area may be realized in the dry specimen, without fluid. It could be assumed that both kinetic processes - water and the failure diffusion - can be significant for the development of seismicity induced by the water injection.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1598--1625
Opis fizyczny
Bibliogr. 74 poz.
Twórcy
autor
- Schmidt Institute of the Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Faculty of Physics, Moscow, Russia
autor
- Schmidt Institute of the Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
autor
- Institut de Physique du Globe de Paris, Paris, France
autor
- Institut de Physique du Globe de Paris, Paris, France
Bibliografia
- 1. Abe, S., and N. Suzuki (2012), Aftershocks in modern perspectives: Complex earthquake network, aging, and non-Markovianity, Acta Geophys. 60,3, 547-561, DOI 10.2478/s11600-012-0026-8.
- 2. Abercrombie, R., A. McGarr, H. Kanamori, and G. Di Torro (eds.) (2000), Earthquakes: Radiated Energy and the Physics of Faulting, AGU Geophysical Monograph Series, Vol. 170, 327 pp.
- 3. Aki, K. (1965), Maximum likelihood estimate of b in the formula log N = a - bM and its confidence limits, Bull. Earthq. Res. Inst., Tokyo Univ. 43,2, 237-239.
- 4. Aki, K. (1981), A probabilistic synthesis of precursory phenomena. In: D.W. Simpson and P.G. Richards (eds.), Earthquake Prediction: An International Review, Maurice Ewing Series, Vol. 4, AGU, Washington, D.C., 566-574, DOI 10.1029/ME004p0566.
- 5. Bachmann, C., S. Wiemer, and J. Woessner (2010), The induced Basel 2006 earthquake sequence: Mapping seismicity parameters on small scales. In: Abstract Book. The 32nd General Assembly of European Seismological Commission. Montpellier, France.
- 6. Bak, P., K. Christensen, L. Danon, and T. Scanlon (2002), Unified scaling law for earthquakes, Phys. Rev. Lett. 88,17, 178501-178504, DOI 10.1103/Phys RevLett.88.178501.
- 7. Bird, P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosyst. 4,3, 1027, DOI 10.1029/2001GC000252.
- 8. Bormann, P. (ed.) (2002), New Manual of Seismological Observatory Practice, GeoForschungsZentrum, Potsdam.
- 9. Bourouis, S., and P. Bernard (2007), Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients, Geophys. J. Int. 169,2, 723-732, DOI 10.1111/j.1365-246X.2006.03325.x.
- 10. Chelidze, T.L. (1986), Percolation theory as a tool for imitation of fracture process in rocks, Pure Appl. Geophys. 124,4-5, 731-748, DOI 10.1007/BF 00879607.
- 11. Chelidze, T.L. (1990), Generalized fractal law of seismicity, Doklady. Akad. Nauk SSSR 314,5, 1104-1105.
- 12. Chelidze, T., T. Reuschle, and Y. Gueguen (1994), A theoretical investigation of the fracture energy of heterogeneous brittle materials, J. Phys. Condens. Mat. 6,10, 1857-1868, DOI 10.1088/0953-8984/6/10/005.
- 13. Cladouhos, T.T., and R. Marrett (1996), Are fault growth and linkage models consistent with power-law distributions of fault lengths? J. Struct. Geol. 18,2-3, 281-293, DOI 10.1016/S0191-8141(96)80050-2.
- 14. Cornet, F.H. (2000), Comment on “Large-scale in situ permeability tensor of rocks from induced microseismicity” by S.A. Shapiro, P. Audigane, J.-J. Royer, Geophys. J. Int. 140,2, 465-469, DOI 10.1046/j.1365-246x.2000.00018.x.
- 15. Cornet, F.H., J. Helm, H. Poitrenaud, and A. Etchecopar (1997), Seismic and aseismic slips induced by large-scale fluid injections, Pure Appl. Geophys. 150,3-4, 563-583, DOI 10.1007/s000240050093.
- 16. Corral, Á. (2005), Renormalization-group transformations and correlations of seismicity, Phys. Rev. Lett. 95,2, 028501, DOI 10.1103/PhysRevLett.95.028501.
- 17. Dahm, T., S. Hainzl, and T. Fischer (2010), Bidirectional and unidirectional fracture growth during hydrofracturing: Role of driving stress gradients, J. Geophys. Res. 115,B12, B12322, DOI 10.1029/2009JB006817.
- 18. Daniel, G., E. Prono, F. Renard, F. Thouvenot, S. Hainzl, D. Marsan, A. Helmstetter, P. Traversa, J. L. Got, L. Jenatton, and R. Guiguet (2011), Changes in effective stress during the 2003-2004 Ubaye seismic swarm, France, J. Geophys. Res. 116,B1, B01309, DOI 10.1029/2010JB007551.
- 19. Enescu, B., and K. Ito (2001), Some premonitory phenomena of 1995 Hyogo-Ken Nanbu (Kobe) earthquake: seismicity, b-value and fractal dimension, Tectonophysics 338, 3-4, 297-314, DOI 10.1016/S0040-1951(01)00085-3.
- 20. Evans, K.F. (2005), Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 2. Critical stress and fracture strength, J. Geophys. Res. 110,B4, B04204, DOI 10.1029/2004JB003169.
- 21. Evans, K.F., A. Genter, and J. Sausse (2005a), Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations, J. Geophys. Res. 110,B4, B04203, DOI 10.1029/2004JB 003168.
- 22. Evans, K.F., H. Moriya, H. Niitsuma, R.H. Jones, W.S. Phillips, A. Genter, J. Sausse, R. Jung, and R. Baria (2005b), Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site, Geophys. J. Int. 160,1, 389-412, DOI 10.1111/j.1365-246X.2004.02474.x.
- 23. Fischer, T., and A. Guest (2011), Shear and tensile earthquakes caused by fluid injection, Geophys. Res. Lett. 38,5, L05307, DOI 10.1029/2010GL045447.
- 24. Fischer, T., S. Hainzl, L. Eisner, S.A. Shapiro, and J. Le Calvez (2008), Microseismic signatures of hydraulic fracture growth in sediment formations: Observations and modeling, J. Geophys. Res. 113,B2, B02307, DOI 10.1029/2007JB005070.
- 25. Gérard, A., A. Genter, T. Kohl, P. Lutz, P. Rose, and F. Rummel (2006), The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France), Geothermics 35,5-6, 473-483, DOI 10.1016/j.geothermics.2006.12.001.
- 26. Goto, K., and K. Otsuki (2004), Size and spatial distributions of fault populations: Empirically synthesized evolution laws for the fractal geometries, Geophys. Res. Lett. 31,5, L05601, DOI 10.1029/2003GL018868.
- 27. Helmstetter, A., G. Ouillon, and D. Sornette (2003), Are aftershocks of large Californian earthquakes diffusing? J. Geophys. Res. 108,B10, 2483, DOI 10.1029/2003JB002503.
- 28. Hill, D.P. (1977), A model for earthquake swarms, J. Geophys. Res. 82,8, 1347-1352, DOI 10.1029/JB082i008p01347.
- 29. Horálek, J., and T. Fischer (2008), Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: Just what we know (a review), Stud. Geophys. Geod. 52,4, 455-478, DOI 10.1007/s11200-008-0032-0.
- 30. Huber, P.J., and E.M. Ronchetti (2011), Robust Statistics, 2nd ed., JohnWiley & Sons Inc., New York, 380 pp.
- 31. Huc, M., and I.G. Main (2003), Anomalous stress diffusion in earthquake triggering: Correlation length, time dependence, and directionality, J. Geophys. Res. 108,B7, 2324, DOI 10.1029/2001JB001645.
- 32. Kagan, Y.Y. (2007), Earthquake spatial distribution: the correlation dimension, Geophys. J. Int. 168,3, 1175-1194, DOI 10.1111/j.1365-246X.2006.03251.x.
- 33. Keilis-Borok, V.I., V.G. Kosobokov, and S.A. Mazhkenov (1989), On similarity in the spatial distribution of seismicity, Vychislitel’naya Seismologiya 22, 28-40 (in Russian).
- 34. King, G. (1983), The accommodation of large strains in the upper lithosphere of the Earth and other solids by self-similar fault systems: the geometrical origin of b-value, Pure Appl. Geophys. 121,5-6, 761-815, DOI 10.1007/BF 02590182.
- 35. Kosobokov, V.G., and S.A. Mazhkenov (1988), Spatial characteristics of similarity for earthquake sequences: Fractality of seismicity. In: Lecture Notes of the Workshop on Global Geophysical Informatics and Application to Research in Earthquake Prediction and Reduction of Seismic Risk (15 November-16 December 1988), ICTP, Trieste, 1-15.
- 36. Kosobokov, V.G., and S.A. Mazhkenov (1994), On similarity in the spatial distribution of seismicity. In: D.K. Chowdhury (ed.), Selected Papers from Volumes 22 and 23 of Vychislitel’naya Seysmologiya, Comput. Seismol. Geodyn., Vol. 1, AGU, Washington, D.C., 6-15, DOI 10.1029/CS001p0006.
- 37. Lei, X., K. Kusunose, T. Satoh, and O. Nishizawa (2003), The hierarchical rupture process of a fault: an experimental study, Phys. Earth Planet. In. 137,1-4, 213-228, DOI 10.1016/S0031-9201(03)00016-5.
- 38. Lockner, D.A. (1993), The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30,7, 883-899, DOI 10.1016/0148-9062(93)90041-B.
- 39. Lockner, D.A., and S.A. Stanchits (2002), Undrained poroelastic response of sandstones to deviatoric stress change, J. Geophys. Res. 107,B12, 2353, DOI 10.1029/2001JB001460.
- 40. Lockner, D.A., J.D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1991), Quasi-static fault growth and shear fracture energy in granite, Nature 350,6313, 39-42, DOI 10.1038/350039a0.
- 41. Lockner, D.A., D.E. Moore, and Z. Reches (1992a), Microcrack interaction leading to shear fracture. In: Proc. 33rd U.S. Rock Mechanics Symposium, Balkema, Rotterdam, 807-816.
- 42. Lockner, D.A., J.D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1992b), Observations of quasistatic fault growth from acoustic emissions. In: B. Evans, and T.-F. Wong (eds.), Fault Mechanics and Transport Properties of Rocks, Academic Press Inc., New York, 3-31.
- 43. Main, I.G., P.G. Meredith, and C. Jones (1989), A reinterpretation of the precursory seismic b-value anomaly from fracture mechanics, Geophys. J. Int. 96,1, 131-138, DOI 10.1111/j.1365-246X.1989.tb05255.x.
- 44. Marsan, D., C.J. Bean, S. Steacy, and J. McCloskey (2000), Observation of diffusion processes in earthquake populations and implications for the predictability of seismicity systems, J. Geophys. Res. 105,B12, 28081-28094, DOI 10.1029/2000JB900232.
- 45. Mjachkin, V.I., W.F. Brace, G.A. Sobolev, and J.H. Dieterich (1975), Two models for earthquake forerunners, Pure Appl. Geophys. 113,1, 169-181, DOI 10.1007/BF01592908.
- 46. Mosteller, F., and J.W. Tukey (1977), Data Analysis and Regression. A Second Course in Statistics, Addison-Wesley Series in Behavioral Science: Quantitative Methods, Addison-Wesley, Reading, 588 pp.
- 47. Nicol, A., J.J. Walsh, J. Watterson, and P.A. Gillespie (1996), Fault size distributions - are they really power-law? J. Struct. Geol. 18,2-3, 191-197, DOI 10.1016/S0191-8141(96)80044-7.
- 48. Noir, J., E. Jacques, S. Békri, P. M. Adler, P. Tapponnier, and G.C.P. King (1997), Fluid flow triggered migration of events in the 1989 Dobi earthquake sequence of Central Afar, Geophys. Res. Lett. 24,18, 2335-2338, DOI 10.1029/97GL02182.
- 49. Pandey, A.P., and R.K. Chadha (2003), Surface loading and triggered earthquakes in the Koyna-Warna region, western India, Phys. Earth Planet. In. 139,3-4, 207-223, DOI 10.1016/j.pepi.2003.08.003.
- 50. Pisarenko, D.V., and V.F. Pisarenko (1995), Statistical estimation of the correlation dimension, Phys. Lett. A 197,1, 31-39, DOI 10.1016/0375-9601(94) 00923-D.
- 51. Pisarenko, V.F. (1989), About recurrence law of earthquakes. In: M.A. Sadovsky (ed.), Discrete Properties of the Geophysical Environment, Nauka, Moscow, 47-60 (in Russian).
- 52. Ponomarev, A.V., A.D. Zavyalov, V.B. Smirnov, and D.A. Lockner (1997), Physical modeling of the formation and evolution of seismically active fault zones, Tectonophysics 277,1-3, 57-81, DOI 10.1016/S0040-1951(97) 00078-4.
- 53. Ponomarev, A., V. Smirnov, A. Patonin, S. Stroganov, and T. Kotlyar (2008), Modeling of transient processes in seismicity: Laboratory experiments (I). In: 31th General Assembly of ESC, 7-12 September 2008, Hersonissos, Crete island, Greece, Abstracts, p. 152.
- 54. Reches, Z., and D.A. Lockner (1994), Nucleation and growth of faults in brittle rocks, J. Geophys. Res. 99,B9, 18159-18173, DOI 10.1029/94JB00115.
- 55. Scholz, C.H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., Cambridge University Press, Cambridge, 471 pp., DOI 10.1017/CBO978 0511818516.
- 56. Shapiro, S.A., and C. Dinske (2009), Scaling of seismicity induced by nonlinear fluid-rock interaction, J. Geophys. Res. 114,B9, B09307, DOI 10.1029/2008JB006145.
- 57. Shapiro, S.A., P. Audigane, and J.-J. Royer (1999), Large-scale in situ permeability tensor of rocks from induced microseismicity, Geophys. J. Int. 137,1, 207-213, DOI 10.1046/j.1365-246x.1999.00781.x.
- 58. Shapiro, S.A., C. Dinske, and J. Kummerow (2007), Probability of a givenmagnitude earthquake induced by a fluid injection, Geophys. Res. Lett. 34,22, L22314, DOI 10.1029/2007GL031615.
- 59. Singh, Ch., P.M. Bhattacharya, and R.K. Chadha (2008), Seismicity in the Koyna-Warna reservoir site in Western India: Fractal and b-value mapping, Bull. Seismol. Soc. Am. 98,1, 476-482, DOI 10.1785/0120070165.
- 60. Smirnov, V.B. (2003), Estimating the duration of the lithospheric failure cycle from earthquake catalogs, Izv. - Phys. Solid Earth 39,10, 794-811.
- 61. Smirnov, V.B. and A.V. Ponomarev (2004), Regularities in relaxation of the seismic regime according to natural and laboratory data, Izv. - Phys. Solid Earth 40,10, 807-816.
- 62. Smith, W.D. (1981), The b-value as an earthquake precursor, Nature 289,5794, 136-139, DOI 10.1038/289136a0.
- 63. Sobolev, G.A. (2011), Seismicity dynamics and earthquake predictability, Nat. Hazards Earth Syst. Sci. 11, 445-458, DOI 10.5194/nhess-11-445-2011.
- 64. Sornette, D., and V. Pisarenko (2003), Fractal plate tectonics, Geophys. Res. Lett. 30,3, 1105, DOI 10.1029/2002GL015043.
- 65. Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge, 220 pp.
- 66. Vallianatos, F., G. Michas, G. Papadakis, and P. Sammonds (2012), A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece), Acta Geophys. 60,3, 758-768, DOI 10.2478/s11600-012-0011-2.
- 67. Vlahos, L., H. Isliker, Y. Kominis, and K. Hizanidis (2008), Normal and anomalous diffusion: A Tutorial. In: T. Bountis (ed.), Order and Chaos, Vol. 10, Patras University Press, Patras.
- 68. Watterson, J., J.J. Walsh, P.A. Gillespie, and S. Easton (1996), Scaling systematics of fault sizes on a large-scale range fault map, J. Struct. Geol. 18,2-3, 199-214, DOI 10.1016/S0191-8141(96)80045-9.
- 69. Wiemer, S., and M. Wyss (2000), Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan, Bull. Seismol. Soc. Am. 90,4, 859-869, DOI 10.1785/0119990114.
- 70. Yielding, G., T. Needham, and H. Jones (1996), Sampling of fault populations using sub-subsurface data: a review, J. Struct. Geol. 18,2-3, 135-146, DOI 10.1016/S0191-8141(96)80039-3.
- 71. Zavyalov, A.D. (2002), Testing the MEE prediction algorithm in various seismically active regions in the 1985-2000 period: Results and analysis, Izv. - Phys. Solid Earth 38,4, 262-275.
- 72. Zhang, G., and Z. Fu (1981), Some features of medium- and short-term anomalies before great earthquakes. In: D.W. Simpson and P.G. Richards (eds.), Earthquake Prediction. An International Review, Maurice Ewing Series, Vol. 4, AGU, Washington, D.C., 497-509, DOI 10.1029/ME004p0497.
- 73. Zhurkov, S.N. (1965), Kinetic concept of the strength of solids, Int. J. Fract. Mech. 1,4, 311-323.
- 74. Zhurkov, S.N., V.S. Kuksenko, V.A. Petrov, V.N. Savlyev, and U. Sultanov (1977), On the problem of prediction of rock fracture, Izv. -Phys. Solid Earth 13,6, 374-379.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b39cb9d-5ce5-448b-b16d-c3eeed43dec1