PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of modified starch on separation of fluorite from barite using sodium oleate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a modified starch was utilized to selectively separate barite from fluorite. The results of flotation tests showed that highly selective separation of fluorite from barite was obtained when 250 mg/dm3 of modified starch and 13.16×10−5 mol/dm3 sodium oleate was used in neutral solutions. FTIR spectra results showed that the modified starch can adsorb on the fluorite and barite surfaces. Zeta potential analyses indicated that the modified starch had little effect on adsorption of sodium oleate on the fluorite surface, although it interfered with the adsorption of sodium oleate on the barite surface. Contact angle measurements results corresponded well with the flotation results.
Słowa kluczowe
Rocznik
Strony
228--237
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Wuhan University of Technology, School of Resources and Environmental Engineering, Wuhan 430070, China
autor
  • Wuhan University of Technology, School of Resources and Environmental Engineering, Wuhan 430070, China
  • Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China
autor
  • Wuhan University of Technology, School of Resources and Environmental Engineering, Wuhan 430070, China
  • Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China
autor
  • Wuhan University of Technology, School of Resources and Environmental Engineering, Wuhan 430070, China
  • Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China
autor
  • Wuhan University of Technology, School of Resources and Environmental Engineering, Wuhan 430070, China
Bibliografia
  • BI K.J., FANG J.J., JIANG T.G., LI G.D., 2015. Research Status on Flotation Reagents of Barite. Conservation and Utilization of Mineral Resourses, 4, 57- 61.
  • CAMBIER P., 1986. Infrared study of goethites of varying crystallinity and particle size: i. interpretation of oh and lattice vibration frequencies. Clay Minerals, 21(2), 191-200.
  • CHEN T.X., ZHAO Y.L., SONG S.X., 2017. Electrophoretic mobility study for heterocoagulation of montmorillonite with fluorite in aqueous solutions. Powder Technology, 309, 61-67.
  • GAO Z.Y., BAI D., SUN W., CAO X.F., HU Y.H., 2015 (a). Selective flotation of scheelite from calcite and fluorite using a collector mixture. Minerals Engineering, 72, 23-26.
  • GAO Z.Y., GAO Y.S., ZHU Y.Y., HU Y.H., SUN W., 2016. Selective Flotation of Calcite from Fluorite: A Novel Reagent Schedule. Minerals, 6(4), 114.
  • GAO Z.Y., LI C.W., SUN W., HU Y.H., 2017. Anisotropic surface properties of calcite: A consideration of surface broken bonds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 53-61.
  • GAO Z.Y., SUN W., HU Y.H., 2014. Mineral cleavage nature and surface energy: anisotropic surface broken bonds consideration. Transactions of Nonferrous Metals Society of China, 24(9), 2930-2937.
  • GAO Z.Y., SUN W., HU Y.H., 2015 (b). New insights into the dodecylamine adsorption on scheelite and calcite: an adsorption model. Minerals Engineering, 79, 54-61.
  • GAO Z.Y., SUN W., HU Y.H., LIU X.W., 2012. Anisotropic surface broken bond properties and wettability of calcite and fluorite crystals. Transactions of Nonferrous Metals Society of China, 22(5), 1203-1208.
  • GOTIć M., MUSIć S., 2007. Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. Journal of Molecular Structure, 834, 445-453.
  • HANNA H.S., 1974. Adsorption of some starches on spar minerals. In Recent Advances in Science and Technology of Materials: Springer US, 365- 374.
  • HU Y.H., CHI R., XU Z.H., 2003. Solution Chemistry Study of Salt- type Mineral Flotation Systems: Role of Inorganic Dispersants. Industrial & Engineering Chemistry Research, 42, 1641-1647.
  • KAR B., SAHOO H., RATH S.S., DAS B., 2013. Investigations on different starches as depressants for iron ore flotation. Minerals Engineering, 49, 1-6.
  • KOMULAINEN S., PURSIAINEN, J., PERÄMÄKI P., LAJUNEN M., 2013. Complexation of Fe (III) with water-soluble oxidized starch. Starch-Stärke, 65(3‐4), 338-345.
  • KOU J., XU S.H., SUN T., SUN C.B., GUO Y., WANG C., 2016. A study of sodium oleate adsorption on Ca2+ activated quartz surface using quartz crystal microbalance with dissipation. International Journal of Mineral Processing, 154, 24-34.
  • KOWALCZUK P.B., AKKAYA C., ERGUN M., JANICKI M.J., SAHBAZ O., DRZYMALA J., 2017. Water contact angle on corresponding surfaces of freshly fractured fluorite, calcite and mica. Physicochem. Probl. Miner. Process, 53(1), 192-201.
  • KOWALCZUK P.B., ZAWALA J., 2016. A relationship between time of three-phase contact formation and flotation kinetics of naturally hydrophobic solids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 371-377.
  • LI H.P., ZHANG S.S., JIANG H., HU Y.H., WANG D.Z., 2010. Selective depression of diaspore with waxy maize starch. Minerals Engineering, 23, 1192-1197.
  • LI H.P., ZHANG S.S., JIANG H., LI B., 2010. Effect of modified starches on depression of diaspore. Transactions of Nonferrous Metals Society of China, 20(8), 1494-1499.
  • LU S.S., 2008. Research on crystal chemistry on flotation of several sulfate minerals. Northeastern University :Shenyang.
  • LU S.S., 2010. Research on Basic Floatability of Barite and Effect of Fe3+ on Which in Sodium Oleate Flotation System. 8th Annual meeting of China Nonferrous Metals Society, 18-22.
  • MILLER J.D., WANG X.M., JIN J.Q., KAUSTUBH SHRIMALI., 2016. Interfacial water structure and the wetting of mineral surfaces. International Journal of Mineral Processing, 156, 62-68.
  • NUNES A., PERES A., DE ARAUJO A., GEORGE EDUARDO SALES VALADAO., 2011. Electrokinetic properties of wavellite and its floatability with cationic and anionic collectors. Journal of Colloid and Interface Science, 361(2), 632- 638.
  • RAO K., CASES J., DE DONATO P., K.S.E. FORSSBERG., 1991. Mechanism of Oleate Interaction on Salt- Type Minerals. Journal of Colloid and Interface Science, 145(2), 314- 329.
  • REN Z.J., YU F.T., GAO H.M., CHEN Z.J., PENG Y.J., LIU L.Y., 2017. Selective Separation of Fluorite, Barite and Calcite with Valonea Extract and Sodium Fluosilicate as Depressants. Minerals, 7(2), 24.
  • UCAR A., ÖZDAG H., 2013. Mechanism of collector adsorption in fluorite flotation. Mineral Processing and Extractive Metallurgy Review, 100-105.
  • WANG G.J., 2013. Research on mechanism and application of several kinds of modified starch as hematite inhibitor. Central South University: Changsha.
  • WANG J.J., GAO Z.Y., GAO Y.S., HU Y.H., SUN W., 2016. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Minerals Engineering, 98, 261-263.
  • WEN L., 1989. Mineral Infrared Spectroscopy. Chongqing: Chongqing University Press.
  • XIA L.Y., ZHONG H., LIU G.Y., WANG S., 2009. Utilization of soluble starch as a depressant for the reverse flotation of diaspore from kaolinite. Minerals Engineering, 22, 560-565.
  • XU L.H., DONG F.Q., WU H.Q., WANG Z., XIAO J.H., 2013. A Study on Spodumene Flotation Mechanism by Sodium Oleate. Acta Mineralogica Sinica, 33(2), 181.
  • XU L.H., HU Y.H., WU H.Q., TIAN J., LIU J., GAO Z.Y., WANG L., 2016. Surface crystal chemistry of spodumene with different size fractions and implications for flotation. Separation and Purification Technology, 169, 33-42.
  • YU F.T., 2015. Study on Flotation Behavior of Fluorite, Barite and Calcite in Wuling Mountainous Area. Wuhan University of Technology: Wuhan.
  • YU X.Y., ZENG A., WANG H.L., WANG Q.Q., WEI X.A., 2016. Preparation method of flotation depressant and its application. C.N. Patent 201610045869. 7.
  • ZHANG B., LI J., ZHANG X.F., CAO Z., WANG J.L., HAN H., 2016. Activation and mechanism of Cu2+ and Fe3+ in flotation system of fluorite ore. Chinese Journal of Rare Metals, 40(9), 963- 968.
  • ZHANG X., WANG X.M., JAN D. MILLER., 2015. Wetting of selected fluorite surfaces by water. Surface Innovations, 3(1), 39-48.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b396538-f4ef-452d-bb49-40ec178a19d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.