PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability conditions for fractional-order linear equations with delays

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of stability of the Gr¨unwald-Letnikov-type linear fractional-order discrete-time systems with delays is discussed. For the stability analysis of the considered systems the Z -transform is used. The sufficient conditions for the asymptotic stability of the considered systems are presented. Using conditions related to eigenvalues of the matrices defining the linear difference systems, one can determine the regions of location of eigenvalues of matrices associated to the systems in order to guarantee the asymptotic stability of the considered systems. Some of these regions are illustrated with relevant examples.
Rocznik
Strony
449--454
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
  • Faculty of Computer Science, Bialystok University of Technology, 45a Wiejska St., 15-351 Białystok, Poland
autor
  • Institute of Applied Computer Science, Lodz University of Technology, 18/22 Stefanowskiego St., 90-924 Łódź, Poland
autor
  • Faculty of Computer Science, Bialystok University of Technology, 45a Wiejska St., 15-351 Białystok, Poland
Bibliografia
  • [1] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Company, Singapore, 2000.
  • [2] T. Kaczorek, “Fractional positive linear systems”, Kybernetes 38(7/8), 1059–1078 (2009).
  • [3] T. Kaczorek, Selected Problems of Fractional Systems Theory, Lecture Notes in Control and Information Sciences, volume 411, Springer, 2011.
  • [4] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006.
  • [5] D. Mozyrska and M. Wyrwas, “The Z-transform method and delta type fractional difference operators”, Discrete Dynamics in Nature and Society, 12 pages (2015).
  • [6] D. Mozyrska and P. Ostalczyk, “Generalized Fractional-Order Discrete-Time Integrator”, Complexity, Vol. 2017, Article ID 3452409, 11 pages (2017).
  • [7] M.D. Ortigueira, F.J.V. Coito, and J.J. Trujillo, “Discrete-time differential systems”, Signal Processing 107, 198–217 (2015).
  • [8] P. Ostalczyk, Discrete Fractional Calculus. Applications in Control and Image Processing, World Scientific Publishing Co Pte Ltd, vol. Series in Computer Vision – Vol. 4, 2016.
  • [9] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 1999.
  • [10] D. Sierociuk and A. Dzieliński, “Stability of discrete fractional order state-space systems”, J. Vibration and Control 14(9–10), 1543–1556 (2008).
  • [11] J. Baranowski, W. Bauer, M. Zagórowska, and P. Piątek, “On Digital Realizations of Non-integer Order Filters”, Circuits, Systems, and Signal Processing 35(6), 2083–2107 (2016).
  • [12] N.R.O. Bastos, R.A.C. Ferreira, and D.F.M. Torres, “Discretetime fractional variational problems”, Signal Processing 91(3), 513–524 (2011).
  • [13] D. Sierociuk and A. Dzieliński, “Fractional Kalman filter algorithm for the states parameters and order of fractional system estimation”, Int. J. Appl. Math. Comp. Sci. 16(1), 129–140 (2006).
  • [14] R. Abu-Saris and Q. Al-Mdallal, “On the asymptotic stability of linear system of fractional-order difference equations”, An International Journal for Theory and Applications of Fractional Calculus and Applied Analysis 16(3), 613–629 (2013).
  • [15] D. Mozyrska, E. Girejko, and M. Wyrwas, “Advances in the Thoery and Applications of Non-integer Order Systems”, in W. Mitkowski, J. Kacprzyk, and J. Baranowski, editors, Lecture Notes in Electrical Engineering, volume 257, chapter Stability of fractional difference systems with two orders, 41–52, Springer, 2013.
  • [16] D. Mozyrska and M. Wyrwas, “Stability of discrete fractional linear systems with positive orders”, IFAC-PapersOnLine 50(1), 8115–8120 (2017).
  • [17] D. Mozyrska and M. Wyrwas, “Explicit criteria for stability of two-dimensional fractional difference systems”, Int. J. Dynam. Control 5(1), 4–9 (2017).
  • [18] R. Stanisławski and K. Latawiec, “Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability”, Bull. Pol. Ac.: Tech. 61(2), 353–361 (2013).
  • [19] R. Stanisławski and K. Latawiec, “Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems”, Bull. Pol. Ac.: Tech. 61(2), 363–370 (2013).
  • [20] J. Cermak, T. Kisela, and L. Nechvat´al, “Stability and asymptotic properties of a linear fractional difference equation”, Advances in Difference Equations 1(122), 2012.
  • [21] J. Cermak, T. Kisela, and L. Nechvatal, “Stability regions for linear fractional differential systems and their discretizations”, Applied Mathematics and Computation 219, 7012–7022 (2013).
  • [22] M. Busłowicz, “Stability of fractional discrete-time linear scalar systems with one delay”, Pomiary Automatyka Robotyka 2, 327–332 (2013).
  • [23] J. Cerm´ak, J. Hornacek, and T. Kisela, “Stability regions for fractiona ldifferential systems with a time delay”, Commun Nonlinear Sci Numer Simulat 31, 108–123 (2016).
  • [24] M. Busłowicz and A. Ruszewski, “Necessary and sufficient conditions for stability of fractional discrete-time linear statespace systems”, Bull. Pol. Ac.: Tech. 61(4), 779–786 (2013).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b3079e2-8b5a-44f5-9fea-bd36c3d62371
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.