Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Diffusion brazing was performed between titanium (Grade 2) and stainless steel (X5CrNi18-10) using as a filler a nickel foil at the temperatures of 850, 900, 950 and 1000°C. The microstructure was investigated using light microscopy and scanning electron microscopy equipped with an energy dispersive X-ray system (EDS). The structure of the joints on the titanium side was composed of the eutectoid mixture αTi+Ti2Ni and layers of intermetallic phases Ti2Ni, TiNi and TiNi3. The stainless steel-nickel interface is free from any reaction layer at 850°C, above this temperature thin layer of reaction appears. The microhardness measured across the joints reaches higher values than for titanium and stainless steel, and it achieves value from 260 to 446 HV. The highest shear strength (214 MPa) was achieved for joints brazed at 900°C.
Wydawca
Czasopismo
Rocznik
Tom
Strony
997--1001
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Department of Applied Computer Science and Armament Engineering, Kielce, Poland
autor
- Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Department of Applied Computer Science and Armament Engineering, Kielce, Poland
Bibliografia
- [1] American Welding Society Staff, Brazing Handbook ed IV, Miami, (1991).
- [2] M. Ghosh, S. Chatterjee, Mat. Sci. Eng. A-struct. 358, 152 (2003).
- [3] A. Winiowski, Arch. Metall. Mater. 52, 593 (2007).
- [4] A. Elrefaey, W. Tillmann, J. Mater. Sci. 42, 9553 (2007).
- [5] S. Kundu, S. Chatterjee, D. Olson, B. Mishra, Metall Mater Trans A. 39, 2106 (2008).
- [6] A. Winiowski, Arch Metall Mater. 55, 991 (2010).
- [7] A. Elrefaey, W. Tillmann, J. Mater. Process. Tech. 209, 4842 (2009).
- [8] A. Dziadoń, R. Mola, L. Błaż, Arch. Metall. Mater. 56, 677 (2011).
- [9] H. Kato , S. Abe, T. Tomizawa, J. Mater. Sci. 32, 5225 (1997).
- [10] B. Aleman, I. Gutierrez, J. J. Urcola, Mater. Sci. Tech. Ser. 9, 633 (1993).
- [11] M. Ferrante, E. V. Pigoretti, J. Mater. Sci. 37, 2825 (2002).
- [12] R. K. Shiue, S. K. Wu, C. H. Chan, C. S. Huang, Metall. Mater. Trans. A. 37, 2207 (2006).
- [13] M. Konieczny, B. Szwed, R. Mola, METAL 2015 conference, 151 (2015).
- [14] B. Szwed, M. Konieczny, J. Mater. Manuf.. Eng. 67, 21 (2014).
- [15] E. Atasoya, N. Kahramanb, Mater. Charact. 59, 1481 (2008).
- [16] A. Winiowski, Kovove Mater. 51, 19 (2013).
- [17] M. Konieczny, R.Mola, Steel Res Int. 79, 499 (2008).
- [18] M. Konieczny, Kovove Mater. 48, 47 (2010).
- [19] B. Szwed, M. Konieczny, R. Mola, METAL 2015 Conference, 160 (2015).
- [20] S. Sam, S. Kundu, S. Chatterjee, Mater Design. 40, 237 (2012).
- [21] S. Kundu, S. Chatterjee, Mater. Sci. Eng. 425 107 (2006).
- [22] G. R. Kamat, Weld. J. 67, 44 (1988).
- [23] S. Kundu, S. Chatterjee, J. Mater. Sci. 42, 7906 (2007).
- [24] S. Kundu, S. Chatterjee, Mater. Charact. 59, 631 (2008).
- [25] I. J. Polmear, Light Alloys ed IV, Melbourne, (2005).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4b2c225f-727a-4dd9-a6c6-4ea334a3d166